- 相關推薦
精選分數的基本性質說課稿3篇
作為一名人民教師,常常要根據教學需要編寫說課稿,說課稿有助于教學取得成功、提高教學質量。我們應該怎么寫說課稿呢?下面是小編為大家收集的分數的基本性質說課稿3篇,歡迎閱讀,希望大家能夠喜歡。
分數的基本性質說課稿 篇1
沈老師的課,給我感受最深的就是教學語言的準確性、嚴密性,無可挑剔,對學生的啟發(fā)、點撥恰到好處,與學生的交流親切自然,駕馭課堂的能力讓人佩服。盡管是一堂舊教材的課,但在沈老師設計的課堂中,卻讓人欣喜的發(fā)現(xiàn)新的課程標準中的新理念,為舊教材與新理念的有機結合作了一個很好的典范作用。下面就這節(jié)課談談自己的體會。
1.教材簡析
《分數的基本性質》是小學數學教材第十冊的內容之一,在小學數學學習中起著承前啟后、舉足輕重的作用,它既與整數除法的商不變性質有著內在的聯(lián)系,也是后面進一步學習分數的計算、比的基本性質的基礎。分數的.基本性質是一種規(guī)律性知識,分數的分子分母變了,分數的大小會變嗎?分數的分子分母如何變化,分數的大小不變呢?學生在這種“變”與“不變”中發(fā)現(xiàn)規(guī)律。
2、教材處理
。1)堅持以本為本的原則,把教材中的陳述性教學為猜想與驗證性發(fā)現(xiàn)。
。2)把總結式教學為學生自我發(fā)現(xiàn)、自我總結的探究性學習。
。3)以教師的主導地位轉化為學生為主體的學生探究性學習。
3、教學過程
這節(jié)課充分運用知識的遷移,調動了學生的知識積累,使學生學的輕松、愉快,同時感悟了知識的形成過程。這節(jié)課以“商不變的性質”復習引入,通過一組練習題充分復習了“被除數和除數同時擴大或縮小相同倍數,商不變!
在新授過程中,沈老師沒有單一地把今天所要學習的內容直接出示給學生,而是把一種靜態(tài)的數學知識變?yōu)橐环N讓學生在一種大問題背景下的探索活動,使學生在一種動態(tài)的探索過程中自己發(fā)現(xiàn)分數的基本性質,從而體驗發(fā)現(xiàn)真理的曲折和快樂,感受數學的思想方法,體會科學的學習方法。整個課堂創(chuàng)設了一種“猜想——驗證——反思”的教學模式,以“猜想”貫穿全課,引導學生遷移舊知、大膽猜想——實驗操作、驗證猜想——質疑討論、完善猜想等,把這一系列探究過程放大,把“過程性目標”凸顯出來。在這一過程中,學生不僅學得快樂,而且每個學生的個性也充分得到了發(fā)展,為學生的長遠發(fā)展奠定了良好的基礎。
沈老師設計的練習題的也是由淺入深,形式多樣。既復習了新知識,并讓學生在練習中有所提升,組織學生自己討論尋求解決的辦法,體現(xiàn)了自主學習。
分數的基本性質說課稿 篇2
一、說教材
《分數的基本性質》是在分數教學中占有重要的地位,在小學數學學習中起著承前啟后的作用。它既以分數的意義、分數的大小比較為基礎,又與整數除法及商不變的性質有著內在的聯(lián)系,更是分數的約分、通分的依據,也是進一步學習分數加減法計算、比的基本性質的基礎。因此,分數的基本性質是該單元的教學重點之一。
二、說學情
學生在三年級上學期已經初步認識了分數,以及同分母分數的大小。在本學期又學習了因數、倍數等概念,掌握了2、3、5的倍數的特征,為學習本單元知識打下了基礎。五年級學生已經養(yǎng)成了合作學習的習慣,并且已經具有了一定的分析和解決問題的能力,再加上他們所具有的一定的生活經驗,因此能夠在教師的引導下完成“質疑——探索——釋疑——應用”這一完整的學習過程。
三、說教學目標
依據新的《數學課程標準》,為了更好地體現(xiàn)數學學習對學生在數學思考、解決問題以及情感與態(tài)度等方面的要求。根據本節(jié)課的具體內容并結合學生的實際情況,我制定了以下教學目標:
知識與技能:讓學生親身經歷“分數基本性質”抽象概括的過程,理解和掌握分數的基本性質,并能初步運用分數的基本性質解決簡單的數學問題。
過程與方法:讓學生經歷發(fā)現(xiàn)問題、探究問題、解決問題的全過程,在觀察、猜想、驗證等探索活動中,培養(yǎng)學生觀察--探索--抽象--概括的能力以及合情推理能力,體驗解決問題策略的多樣性。
情感與態(tài)度:使學生在分數基本性質的探究活動中,獲得成功的體驗,建立自信心,感受到數學的嚴謹性,及滲透事物是相互聯(lián)系、發(fā)展變化的辯證唯物主義觀點。
教學重點:理解和掌握分數的基本性質,運用分數的基本性質解決實際問題。
教學難點:讓學生經歷自主探索,發(fā)現(xiàn)和歸納分數的基本性質,并會應用分數的基本性質解決相關問題。
教學準備:三張同樣大小的長方形紙張,彩色筆
四、說教學方法
樹立以“以學生發(fā)展為本”、“以學定教”的思想,為實現(xiàn)教學目標,有效地突出重點、突破難點,我遵循學生的認知規(guī)律,以建構主義學習理論為指導,在探究分數的基本性質過程中,采取學生動手操作、小組討論、合作探究等方式,引導學生進行比較、觀察、分析,充分運用知識遷移的規(guī)律,在感知的基礎上加以抽象、概括,進行歸納整理,采取遷移教學法、引導發(fā)現(xiàn)法組織教學。創(chuàng)設了一種“情境導入、動手體驗、自主探索”的課堂教學形式,以“自主探究”貫穿全課,引導學生遷移舊知、大膽猜想——實驗操作、驗證——質疑討論、完善猜想等,把這一系列探究過程放大,把“過程性目標”凸顯出來。
五、學法
有效的數學學習活動,不能單純模仿與記憶,動手實踐、自主探索與合作交流是學生學習數學的重要方式。在學習例題的過程中學生主要采用自學嘗試法,自主探究法,合作交流的學習方式,讓學生通過獨立自主地學習將分數化成分母不同但大小相同的分數,并嘗試完成做一做,達到檢驗自學的目的。通過觀察、比較、提出問題并解決問題來進行自主探索與合作交流,充分發(fā)揮學生主體參與作用、激發(fā)學生學習愛好,同時讓學生獲得成功體驗。
六、說教學過程
為了全面、準確地引導學生探索發(fā)現(xiàn)分數的基本性質,實現(xiàn)教學目標,我努力抓住學生的思維生長點組織教學,設計了以下五步教學環(huán)節(jié):
1、創(chuàng)境設疑: 回顧舊知,引發(fā)思考
2、自主探究: 動手實踐,發(fā)現(xiàn)規(guī)律
3、交流歸納:揭示規(guī)律,鞏固深化
4、分層精練:多層練習,多元評價
5、感悟延伸:課堂小結,加深理解
第一環(huán)節(jié):創(chuàng)境設疑
結合六一兒童節(jié)的到來,創(chuàng)設分蛋糕的`情景,媽媽分得公平嗎?課始便迅速地抓住了學生的好奇心,使課堂教學有了一個好的開始。鼓勵學生當小法官,則極大地調動了學生的積極性,使他們在心理上產生懸念,進一步激發(fā)學生的學習興趣,為后面的學習做好了鋪墊。這樣設計也是從學生已有的經驗和情感出發(fā),找準新知的最佳切入點,為學生后面的聯(lián)想和猜想巧設“孕伏”。
第二環(huán)節(jié):自主探究
通過折紙、涂色的動手操作活動,使學生親身經歷并獲得非常具體、真切的感知,為探究分子、分母的變化規(guī)律提供認知基礎。教師通過五個有層次的問題,分層質疑,分層提問,分層評價,盡量地關注到了每一個層次的學生,引導學生逐步在自主探索、合作互助的學習方式中初步理解并能簡單概括出分數的基本性質,并及時強調了0除外的意義,使學生體驗到解決問題策略的多樣性,發(fā)展學生的實踐能力和創(chuàng)新精神,培養(yǎng)學生的合作意識。
第三環(huán)節(jié):交流歸納
在這一環(huán)節(jié),教師引導學生在觀察與分析、探索與思考分數的基本性質的基礎上不斷生成新問題,通過質疑,借助知識的遷移,溝通分數的基本性質與商不變性質之間的聯(lián)系。引導學生應用分數和除法的關系,以及整數除法中商不變的性質,說明分數的基本性質。這樣的設計就讓學生感受到了數學知識的內在聯(lián)系,同時滲透“事物之間是相互聯(lián)系”的辨證唯物主義觀點,培養(yǎng)學生觀察--探索--抽象--概括的能力。
第四環(huán)節(jié):分層精練
這個環(huán)節(jié)讓學生對分數的基本性質再一次的體驗,感受,研究,同時也是整節(jié)課的亮點之一,練習分層,評價分層,通過分層練習,關注到每一個層次的學生,讓每一個學生都有發(fā)展。教師結合本班學生的學習特點,設計了由淺入深,由易到難的練習,基本練習讓90%的同學體驗到了學習的快樂,綜合練習讓80%的同學品嘗到了成功的喜悅,拓展練習則留到課后,讓學生在自主探究中、討論交流中、知識的沉淀中進一步加深對知識的理解和掌握。
第五環(huán)節(jié):感悟延伸
通過小結、反思,查漏補缺,學生在交流收獲、互相幫助的過程中,使學生對知識有個系統(tǒng)的回顧和認識,從而進一步培養(yǎng)學生的知識概括能力。
總之,本節(jié)課教學是堅持了“學生是探索的主體”這一教學原則,面向全體學生,充分的引導學生動手實驗,自主探索,質疑延伸,合作交流,讓每一個學生在探索的過程中感受數學和日常生活的緊密聯(lián)系,體驗學習數學的快樂,培養(yǎng)了創(chuàng)新精神和實踐能力。
分數的基本性質說課稿 篇3
把單位“1”平均分成若干份,表示這樣的一份或其中幾份的數叫分數。表示這樣的一份的數叫分數單位。分數的基本性質數學說課稿,我們來看看。
分數的基本性質
1.使學生理解和掌握分數的基本性質,能應用性質解決一些簡單問題。
2.培養(yǎng)學生觀察、分析、思考和抽象、概括的能力。
3.滲透形式與實質的辯證唯物主義觀點,使學生受到思想教育。
教學過程
一、談話我們已經學習了分數的意義,認識了真分數、假分數和帶分數,掌握了假分數與帶分數、整數的互化方法。今天我們繼續(xù)學習分數的有關知識。
二、導入新課例
1.用分數表示下面各圖中的陰影部分,并比較它們的大小。
1、分別出示每一個圓,讓學生說出表示陰影部分的分數。
。1)把這個圓看做單位1,陰影部分占圓的幾分之幾?
。2)同樣大的圓,陰影部分占圓的幾分之幾?
。3)同樣大的圓,陰影部分用分數表示是多少?
2、觀察比較陰影部分的大小:
。1)從4 幅圖上看,陰影部分的大小怎么樣?(陰影部分的大小相等。)
。2)陰影部分的大小相等,可以用等號連接起來。
3、分析、推導出表示陰影部分的分數的大小也相等:
(1)4 幅圖中陰影部分的大小相等。那么,表示這4 幅圖的4個分數的大小怎么樣呢?(這4個分數的'大小也相等)
。2)它們的大小相等,也可以用等號連接起來(把4個分數用等號連起來)。
4、觀察、分析相等的分數之間有什么關系?
。1)觀察 轉化成 , 的分子、分母發(fā)生了什么變化? ( 的分子、分母都乘上了2或 的分子、分母都擴大了 2倍。)
。2)觀察 例2.比較 的大小。
1、出示圖:我們在三條同樣的數軸上分別表示這三個分數。
2、觀察數軸上三個點的位置,比較三個分數的大。簭臄递S上可以看出:
3、觀察、分析形式不同而大小相等的三個分數之間有什么聯(lián)系和變化規(guī)律。(1)這三個分數從形式上看不同,但是它們實質上又都相等。(教師板書: )(2)你們分析一下, 、 各用什么樣的方法就都可以轉化成 了呢?
三、抽象概括出分數的基本性質
1、觀察前面兩道例題,你們從中發(fā)現(xiàn)了什么變化規(guī)律? 分數的分子分母都乘上或都除以相同的數(零除外),分數的大小不變。
2、為什么要零除外?
3、教師小結:這就是今天這節(jié)課我們學習的內容:分數的基本性質 (板書:基本性質)
4、誰再說一遍什么叫分數的基本性質?教師板書字母公式:
四、應用分數基本性質解決實際問題
1、請同學們回憶,分數的基本性質和我們以前學過的哪一個知識相類似? (和除法中商不變的性質相類似。)
。1)商不變的性質是什么? (除法中,被除數和除數都乘上或都除以相同的數(零除外),商的大小不變。)
。2)應用商不變的性質可以進行除法簡便運算,可以解決小數除法的運算。 2、分數基本性質的應用:我們學習分數的基本性質目的是加深對分數的認識,更主要的是應用這一知識去解決一些有關分數的問題。例3 把 和 化成分母是12而大小不變的分數。
板書:
教師提問:
。1) ?為什么?依據什么道理?( ,因為分母2乘上6等于12,要使分數的大小不變,分子1也要乘上6.所以, )
(2)這個6是怎么想出來的?(這樣想:2?=12,26=12,也可以看12是2的幾倍:122=6,那么分子1也擴大6倍)
。3) ?為什么?依據的什么道理?( ,因為分母24除以2等于12,要使分數的大小不變,分子10也得除以2,所以, )
。4)這個2是怎么想出來的?(這樣想:24?=12,242=12.也可以想24是12的2倍,那么分子10也應是新分子的2倍,所以新的分子應是102=5)
五。課堂練習
1、把下面各分數化成分母是60,而大小不變的分數。
2、把下面的分數化成分子是1,而大小不變的分數。
3、在( )里填上適當的數。
4、 的分子增加2,要使分數 的大小不變,分母應該增加幾?你是怎樣想的?
5、請同學們想出與 相等的分數。規(guī)律:這個分數的值是 ,然后只要按自然數的順序說出分子是1、2、3、4、分母是分子的4倍為:4、8、12、16無數個。
六、課堂總結今天這節(jié)課我們學習了什么知識?懂得了一個什么道理?分數的基本性質是什么?這是學習分數四則運算的基礎,一定要掌握好。
七、課后作業(yè)
1、指出下面每組中的兩個分數是相等的還是不相等的。
2、在下面的括號里填上適當的數。
分數的基本性質(說課稿)
理解了分數的意義,認識真分數、假分數和帶分數,掌握了假分數和帶分數、整數的互化方法之后,就要學習分數的基本性質。
分數的基本性質在分數教學中占有十分重要的地位,它是約分、通分的理論依據,而約分、通分又是分數四則運算的重要基礎。只有理解和掌握分數的基本性質,能比較熟練地進行約分和通分,才能應用四則運算的法則正確、迅速地進行分數四則運算。因此,分數的基本性質是分數的意義和性質這一單元的教學重點之一。掌握分數與除法的關系,以及除法中被除數、除數同時擴大或同時縮小相同的倍數商不變的規(guī)律,是學好分數基本性質的基礎。
學生在學習和掌握分數的基本性質過程中,敘述性質內容時常常把分子、分母同時乘上或者除以相同的數(零除外)中的同時零除外丟掉。出現(xiàn)這類問題的原因是:對分數的基本性質沒有真正的理解;對零為什么要除外的道理也不太清楚。分數基本性質是建立在:分數的意義、商不變的性質的基礎上學習的,由于學生進入高年級,抽象思維有了一定的基礎,在培養(yǎng)學生探索規(guī)律、應用一些數學方法進行遷移類推、思維的嚴密性以及思維的靈活性等方面,都應該進一步予以加強。這種思想方法以及能力的培養(yǎng),對今后研究統(tǒng)計知識及其學生的終身學習都具有非常重要的作用。
分數的基本性質是以分數大小相等這一概念為基礎展開研究的,由于學生在中年級已經對商不變的性質有了較深入的理解,所以在教學實踐中要有意識的加強分數與除法之間的聯(lián)系,以便把舊知識遷移到新的知識中來。
在教學中,采用小組合作學習的辦法,通過給3張紙涂色、折疊、觀察、探索進行規(guī)律性的總結。在進行小組匯報時,教師揭示了知識間的聯(lián)系,鼓勵學生用不同的理解方法、不同角度進行匯報分數基本性質的可行性,為學生的思維留下了創(chuàng)造空間。在學生總結規(guī)律后,為了加深對分數的性質的理解,還可以讓同學舉一些符合規(guī)律的例子進行說明。教學實踐中,要注重培養(yǎng)學生揭示知識間的聯(lián)系、探索規(guī)律、總結規(guī)律的能力。