丁香花无码AV在线,欧美日韩国产色,年轻人手机在线免费视频,伊人成人在线,可以直接免费观看的av网站,日本三级香港三级人妇99,亚洲免费二区

圓柱的體積教學(xué)反思

時間:2023-07-09 07:15:24 教學(xué)反思 我要投稿

(精品)圓柱的體積教學(xué)反思

  作為一位到崗不久的教師,我們的任務(wù)之一就是教學(xué),通過教學(xué)反思可以有效提升自己的教學(xué)能力,教學(xué)反思要怎么寫呢?下面是小編精心整理的圓柱的體積教學(xué)反思,歡迎大家借鑒與參考,希望對大家有所幫助。

(精品)圓柱的體積教學(xué)反思

圓柱的體積教學(xué)反思1

  本節(jié)課的教學(xué)內(nèi)容是九年義務(wù)教育六年制小學(xué)數(shù)學(xué)第十二冊﹙西師版﹚《圓柱的體積》,以前教學(xué)此內(nèi)容時,直接告訴學(xué)生:圓柱的體積=底面積高,用字母表示公式:V=Sh,讓學(xué)生套用公式練習(xí);我教此內(nèi)容時,不按傳統(tǒng)的教學(xué)方法,而是采用新的教學(xué)理念,讓學(xué)生自己動手實踐、自主探索與合作交流,在實踐中體驗,從而獲得知識。對此,我作如下反思:

  一、學(xué)生學(xué)到了有價值的知識。

  學(xué)生通過實踐、探索、發(fā)現(xiàn),得到的知識是活的,這樣的知識對學(xué)生自身智力和創(chuàng)造力發(fā)展會起到積極的推動作用。所有的答案不是老師告訴的,而是學(xué)生在自己艱苦的學(xué)習(xí)中發(fā)現(xiàn)并從學(xué)生的口里說出來的。這樣的知識具有個人意義,理解更深刻。

  二、培養(yǎng)了學(xué)生的科學(xué)精神和方法。

  新課程改革明確提出要強調(diào)讓學(xué)生通過實踐增強探究和創(chuàng)新意識,學(xué)習(xí)科學(xué)研究的方法,培養(yǎng)科學(xué)態(tài)度和科學(xué)精神。學(xué)生動手實踐、觀察得出結(jié)論的過程,就是科學(xué)研究的過程。

  三、促進了學(xué)生的思維發(fā)展。

  傳統(tǒng)的`教學(xué)只關(guān)注教給學(xué)生多少知識,把學(xué)生當(dāng)成知識的容器。學(xué)生的學(xué)習(xí)只是被動地接受、記憶、模仿,往往學(xué)生只知其然而不知其所以然,其思維根本得不到發(fā)展。而這里創(chuàng)設(shè)了豐富的教學(xué)情景,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識,從而促進了學(xué)生的思維發(fā)展。

  本節(jié)課采用新的教學(xué)方法,取得了較好的教學(xué)效果,不足之處是:由于學(xué)生自由討論、實踐和思考的時間較多,練習(xí)的時間較少。

圓柱的體積教學(xué)反思2

  教材作為教學(xué)的憑借與依據(jù),只不過是編者對學(xué)科知識、國家要求與學(xué)生進行整和思考的結(jié)晶。但由于受時間與地域的影響,我們在執(zhí)行教材時不能把它作為一種“枷鎖”,而應(yīng)作為“跳板”——編者意圖與學(xué)生實際的“跳板”。因此,教學(xué)時,我們要精心研究教材,揣摩編者意圖、考慮學(xué)生實際,創(chuàng)造性地利用教材。

  1、挖掘訓(xùn)練空白,及時補白教材。

編者在編寫教材時,也考慮了地域、學(xué)科、時間等因素,留下了諸多空白,我們使用教材時,要深入挖掘其中的訓(xùn)練空白,及時補白教材。中的例題教學(xué),就挖掘出了教材中的訓(xùn)練空白,并沒有把教學(xué)簡單地停留在一種解答方法上,而是在學(xué)生預(yù)習(xí)的基礎(chǔ)上引導(dǎo)學(xué)生深入思考,在解決問題的過程中體會“從不同的`角度去考慮問題,將得到不同的結(jié)果”的道理,從而學(xué)會多角度考慮問題,提高解決問題的能力。

  2、找出知識聯(lián)系,大膽重組教材。

數(shù)學(xué)知識具有一定的結(jié)構(gòu),知識間存在著密切的聯(lián)系,我們在教學(xué)時不能只著眼于本節(jié)課的教學(xué),而應(yīng)找出知識間的內(nèi)在聯(lián)系,幫助學(xué)生建立一個較為完整知識系統(tǒng)。的表1僅幫助學(xué)生熟練掌握體積公式,此外無更多的教學(xué)價值,而重組后的表2不僅實現(xiàn)了編者的意圖,而且為“比例”的教學(xué)作了提前孕伏。走出了數(shù)學(xué)教學(xué)的“只見樹木,不見森林”的“點教學(xué)”的誤區(qū)。

圓柱的體積教學(xué)反思3

  在本節(jié)課的教學(xué)中,教師根據(jù)教學(xué)的需要,充分利用現(xiàn)實生活中的素材,把教材中有關(guān)圓柱的提積的應(yīng)用所呈現(xiàn)的內(nèi)容變?yōu)楝F(xiàn)實生活中的問題,變書本知識為生活中的知識。

  本節(jié)課中教師沒有過多地教學(xué)生,而讓學(xué)生回歸到生活原形中去,應(yīng)用所學(xué)的知識解決了生活中的實際問題,使本來很枯燥的圓柱的體積應(yīng)用的題材生活化,增加了學(xué)生的`信息量,提高了學(xué)生體會數(shù)學(xué)奧秘的積極性。學(xué)生體會到了生活中處處有數(shù)學(xué),數(shù)學(xué)就在我們身邊,知識才是我們解決實際問題的“金鑰匙”。通過尋找這些信息背后的信息,學(xué)生掌握了知識、形成了技能。同時也感受到了數(shù)學(xué)應(yīng)用的廣泛性以及數(shù)學(xué)與生活的緊密聯(lián)系。

  但在本節(jié)課中也有不足的地方,如①由于中心問題空間較大,具有挑戰(zhàn)性,中下等學(xué)生自主探索有一定的難度;②實踐中,學(xué)生獨立思考和小組討論花時間太多,影響了后面的教學(xué),這都是以后在教學(xué)中應(yīng)注意的問題。

  總之,隨著數(shù)學(xué)的發(fā)展,數(shù)學(xué)的應(yīng)用也越來越廣泛。作為教師的我們,應(yīng)該提供給學(xué)生充分的機會,讓學(xué)生運用已學(xué)過的數(shù)學(xué)知識解決問題,在問題的解決過程中,發(fā)展學(xué)生的思維能力,用數(shù)學(xué)的眼光去感知、去觀察、去應(yīng)用。

圓柱的體積教學(xué)反思4

  教學(xué)圓錐的體積是在掌握了圓錐的認(rèn)識和圓柱的體積的基礎(chǔ)上教學(xué)的。教學(xué)時讓學(xué)生通過實驗來發(fā)現(xiàn)圓錐與等底等高的圓柱之間的關(guān)系,從而得出圓錐的體

  積等于和它等底等高的圓柱體積的三分之一,并能運用這個關(guān)系計算圓錐的體積,讓學(xué)生從感性認(rèn)識上升到理性認(rèn)識。

  我讓學(xué)生觀察,先猜測圓錐的體積和什么有關(guān),學(xué)生聯(lián)系到了圓柱的體積,在猜想中激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生明白學(xué)習(xí)目標(biāo)。教師從展示實物圖形到空間圖形,采用對比的方法,不斷加深學(xué)生對形體的認(rèn)識。然后讓學(xué)生動手實驗:有的組用捏橡皮泥的方法,有的組用到沙子的方法;有的組用計算的方法。讓孩子親歷教學(xué)的驗證過程,從實驗中得出結(jié)論:等底等高的圓錐體體積是圓柱體體積的三分之一,從而推出圓錐的體積公式。接著我趁熱打鐵,讓學(xué)生想一想等積等高的時候,圓柱和圓錐有什么樣的關(guān)系?等積等底的時候,圓柱和圓錐又會有什么樣的關(guān)系?這樣,就有一種水到渠成的感覺。對圓錐的體積建立了鮮明的印象之后,就應(yīng)用公式解決實際的生活問題,起到鞏固深化知識點的作用。

  圓錐的體積這節(jié)課的教學(xué)具有下面的特點,一是在教學(xué)新課時,沒有像傳統(tǒng)教學(xué)那樣,直接拿出等底等高的圓柱和圓錐容器的教具,讓學(xué)生觀察倒沙實驗,而是通過師生交流、問答、猜想等形式,調(diào)動學(xué)生的積極性,激發(fā)學(xué)生強烈的探究欲望,學(xué)生迫切希望通過實驗來證實自己的猜想,所以做起實驗就興趣盎然;二是在實驗時,讓學(xué)生小組合作親自動手實驗,以實驗要求為主線,即動手操作,又動腦思考,努力探索圓錐體積的計算方法。這樣的學(xué)習(xí),學(xué)生學(xué)的活,記得牢,即發(fā)揮教師的主導(dǎo)作用,又體現(xiàn)了學(xué)生的主體地位。學(xué)生在學(xué)習(xí)的過程中,始終是一個探索者、研究者、發(fā)現(xiàn)者,并獲得了富有成效的學(xué)習(xí)體驗

  在教學(xué)之后感覺到遺憾的是,由于教具有限,參與實驗的學(xué)生不多,如果每個小組準(zhǔn)備一套學(xué)具,讓他們以小組合作學(xué)習(xí)的方式使每個學(xué)生都能真切的參與到探究中去,這樣每個學(xué)生都能懷著喜悅的心情進行學(xué)習(xí),最大限度的發(fā)揮每個學(xué)生的自主學(xué)習(xí)的能力,這樣的`學(xué)習(xí)不僅使學(xué)生學(xué)會了知識,更重要的是培養(yǎng)了學(xué)生的能力。

  教材中圓錐體積的相對練習(xí)較少,但在考試?yán)锩鎸嶋H解決問題中卻常常需要學(xué)生能夠靈活應(yīng)用,所以特別增加了一課時練習(xí)。教學(xué)中的一組填空題,對于幫助學(xué)生深入理解等底等高圓柱與圓錐的聯(lián)系很有價值。通過練習(xí),學(xué)生們明確了圓柱與等底等高的圓錐體積和為4個圓錐的體積(或三分之四個圓柱的體積),而它們的體積相差2個圓錐的體積(或三分之二個圓柱的體積)??。掌握這些知識對于解決實際問題很有幫助,如將圓柱削成最大的圓錐,求削去部分的體積是多少,就可直接用圓柱的體積乘三分之二從而使計算簡便。

  教學(xué)的最后我與孩子們一起通過大量的練習(xí),引導(dǎo)總結(jié)出了圓柱和圓錐體積和高(或者是底面積)相等,那么圓錐的底面積(或高)是圓柱的3倍,圓柱的底面積(或高)是圓錐的三分之一。

  總而言之,圓柱圓錐的體積計算是教學(xué)的重點和難點,也是考試中學(xué)生容易丟分的危險高發(fā)內(nèi)容,我在后面的教學(xué)中需要精講和精煉,讓學(xué)生熟能生巧、巧能生精,內(nèi)化成自己的數(shù)學(xué)直覺方為最高層次!

圓柱的體積教學(xué)反思5

  【學(xué)習(xí)目標(biāo)】

  1、探索并掌握圓柱的體積計算公式。

  2、能運用公式計算圓柱的體積,并解決實際問題。

  【學(xué)習(xí)過程】

  一、板書課題

  師:同學(xué)們,今天我們來學(xué)習(xí)“圓柱的體積”(板書課題)。

  二、出示目標(biāo)

  本節(jié)課我們的目標(biāo)是:(出示)

  1、探索并掌握圓柱的體積計算公式。

  2、能運用公式計算圓柱的體積,并解決實際問題。

  了達到目標(biāo),下面請大家認(rèn)真地看書。

  三、出示自學(xué)指導(dǎo)

  認(rèn)真看課本第19頁到第20頁的例5和例6的內(nèi)容,重點看圓柱體積公式的推導(dǎo)過程和例6解題過程,想:

  1、圓柱的體積公式是如何推導(dǎo)出來的?

  2、圓柱的體積計算公式是什么?用字母如何表示?

  5分鐘后,比誰能做對檢測題!

  師:認(rèn)真看書自學(xué),比誰自學(xué)的最認(rèn)真,自學(xué)效果最好。下面自學(xué)競賽開始。

  四、先學(xué)

 。ㄒ唬┛磿

  學(xué)生認(rèn)真看書,教師巡視,督促人人都在認(rèn)真地看書。

 。ǘz測(找兩名學(xué)生板演,其余生寫在練習(xí)本上)

  第20頁“做一做”和第21頁第5題。

  要求:1、認(rèn)真觀察,正確書寫,每一步都要寫出來。

  2、寫完的同學(xué)認(rèn)真檢查。

  五、后教

 。ㄒ唬└

  師:寫完的同學(xué)請舉手。下面,請大家一起看黑板上這些題,發(fā)現(xiàn)問題的同學(xué)請舉手。(由差-中-好)

 。ǘ┯懻

  1、看第1題:認(rèn)為算式列對的請舉手?

  【圓柱的體積=底面積×高】

  2、看第2題:認(rèn)為算式列對的舉手?你是怎么思考的?

  3、看計算過程和結(jié)果,認(rèn)為對的舉手?

  4、評正確率、板書,并讓學(xué)生同桌對改。

  今天你們表現(xiàn)實在是太好了,老師真為你們感到高興。老師這里有幾道練習(xí)題,敢不敢來試一試?(出示)

  六、補充練習(xí):

  1、一個圓柱形鋼材,底面積是30立方厘米,高是60厘米,體積是多少立方厘米?

  2、一個圓柱體和一個長方形的.體積相等,高也相等,那么它們的底面積()。

  3、把一個圓柱的側(cè)面展開,得到一個正方形,圓柱的底面半徑是5厘米,這個圓柱的高是()厘米,體積是()立方厘米。.

  下面,我們就來運用今天所學(xué)的知識來做作業(yè),比誰的課堂作業(yè)能做得又對又快,字體還又端正。

  七、當(dāng)堂訓(xùn)練(課本練習(xí)三,第21頁)

  作業(yè):第3、4、7、8題寫作業(yè)本上

  練習(xí):第1題寫書上,第2、6、9、10題寫練習(xí)本上

  八、板書設(shè)計

  課題三:圓柱的體積

  圓柱的體積=底面積×高

  課后反思:

  本節(jié)課的教學(xué)內(nèi)容是九年義務(wù)教育六年級下冊的《圓柱的體積》,我教此內(nèi)容時,不按傳統(tǒng)的教學(xué)方法,而是采用新的教學(xué)理念,讓學(xué)生自己動手實踐、自主探索與合作交流,在實踐中體驗,從而獲得知識。對此,我作如下反思:

  一、學(xué)生學(xué)到了有價值的知識。

  學(xué)生通過實踐、探索、發(fā)現(xiàn),得到的知識是“活”的,這樣的知識對學(xué)生自身智力和創(chuàng)造力發(fā)展會起到積極的推動作用。所有的答案也不是老師告訴的,而是、學(xué)生在自己艱苦的學(xué)習(xí)中發(fā)現(xiàn)并從學(xué)生的口里說出來的這樣的知識具有個人意義,理解更深刻。

  二、培養(yǎng)了學(xué)生的科學(xué)精神和方法。

  新課程改革明確提出要“強調(diào)讓學(xué)生通過實踐增強探究和創(chuàng)新意識,學(xué)習(xí)科學(xué)研究的方法,培養(yǎng)科學(xué)態(tài)度和科學(xué)精神”。學(xué)生動手實踐、觀察得出結(jié)論的過程,就是科學(xué)研究的過程。

  三、促進了學(xué)生的思維發(fā)展。

  傳統(tǒng)的教學(xué)只關(guān)注教給學(xué)生多少知識,把學(xué)生當(dāng)成知識的“容器”。學(xué)生的學(xué)習(xí)只是被動地接受、記憶、模仿,往往學(xué)生只知其然而不知其所以然,其思維根本得不到發(fā)展。而這里創(chuàng)設(shè)了豐富的教學(xué)情景,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識,從而促進了學(xué)生的思維發(fā)展。

  本節(jié)課采用新的教學(xué)方法,取得了較好的教學(xué)效果,不足之處是:由于學(xué)生自由討論、實踐和思考的時間較多,練習(xí)的時間較少。

圓柱的體積教學(xué)反思6

  《圓柱的體積》不僅要讓學(xué)生掌握圓柱體積的計算方法,最重要的是掌握學(xué)習(xí)的思想方法(轉(zhuǎn)化),因此,教學(xué)新課前,復(fù)習(xí)了圓的面積公式的推導(dǎo)過程,以及長方體正方體的體積計算公式。為轉(zhuǎn)化做好了鋪墊。課上,出示課件:等底等高的長方體、正方體、圓柱,學(xué)生通過觀察,作出猜測:

 。1)圓柱的體積等于長方體和正方體的體積。

 。2)圓柱的體積也等于底面積乘高。

  猜測是否準(zhǔn)確呢?點燃學(xué)生的學(xué)習(xí)欲望。讓學(xué)生根據(jù)圓的面積公式的推導(dǎo)過程,讓學(xué)生遷移想:圓柱體能轉(zhuǎn)化成什么幾何形體,然后讓學(xué)生用教具驗證圓柱轉(zhuǎn)化成長方體過程,并討論思考:這個圓柱體與轉(zhuǎn)化后的長方體相比什么變了,什么沒變?從而得出結(jié)論圓柱的體積等于底面積乘以高。有一種推導(dǎo)過程是我沒有預(yù)設(shè)到的:一學(xué)生回答,長方體的長是圓柱的底面周長的一半,寬是底面半徑,高不變。所以圓柱體積=底面周長的一半×底面半徑×高。我沒有否定她的回答,接著又讓學(xué)生動手實踐操作,讓學(xué)生發(fā)現(xiàn)長方體與圓柱之間的聯(lián)系,利用圓的周長和面積把圓柱體積的也轉(zhuǎn)化成底面積乘以高。這樣有學(xué)生的積極主動的參與,不僅創(chuàng)造性的建立了數(shù)學(xué)模型而且發(fā)現(xiàn)圓柱體的轉(zhuǎn)換成長方體的規(guī)律,掌握了一種重要的學(xué)習(xí)方法,轉(zhuǎn)化。

  在本節(jié)課的教學(xué)過程中還存在諸多的問題。

  1、演示圓柱的體積的時候,因為學(xué)生手中沒有學(xué)具,教師教具的'局限性,演示時后面的學(xué)生看不清楚。

  2、在圓柱體經(jīng)過切割、拼接之后轉(zhuǎn)化為近似長方體的時候,應(yīng)多給后進生留有觀察、討論的時間,他們的思維反應(yīng)能力比其他學(xué)生較慢,應(yīng)給于他們一定的空間和時間,讓后進生也積極參與到課堂的學(xué)習(xí)中,使全班同學(xué)共同進步。

  3、在解決實際問題的時候,不僅要注重公式的應(yīng)用,還要注意計算能力的培養(yǎng)。

圓柱的體積教學(xué)反思7

  一、讓操作更詳實,留下思考的痕跡

  《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:動手實踐、自主探索、合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。組織學(xué)生在實踐操作中探究發(fā)現(xiàn)規(guī)律,可以充分調(diào)動學(xué)生的各種感官,從感性到理性,從實踐到認(rèn)識,從具體到抽象,引導(dǎo)學(xué)生積極動手動腦、概括分析、抽象推理等,這不僅有利于學(xué)生思維的發(fā)展,而且也可以加深學(xué)生對數(shù)學(xué)知識的理解和掌握。尤其是對于幾何知識的學(xué)習(xí),課堂教學(xué)中的動手操作就顯得更加重要。

  在探索圓柱體積計算方法的時候,教師試圖讓學(xué)生結(jié)合圓面積計算的探索方法,能聯(lián)想到可以把,圓柱的體積轉(zhuǎn)化成已知的立體圖形的體積。但這種方法似乎在學(xué)生的印象中并不深刻,因此學(xué)生在探索的一開始,學(xué)生就遇到了思考的困惑,對他后面的探索造成了很大的影響。在教師的印象中圓面積的計算公式推導(dǎo)應(yīng)該是我們花了很多時間去讓學(xué)生操作的,但是操作的效果卻如此之差。我們不妨反問自己一下,究竟自己在教學(xué)的時候是否用好了學(xué)生的操作,讓學(xué)生對操作的過程有深刻的體會與認(rèn)識,在操作中是否激起了學(xué)生的思考。

  當(dāng)學(xué)生想到了探索方法后,卻因為一些客觀的原因,沒有能夠讓學(xué)生親自去套作一番,光是看課件、看其他同學(xué)的操作,對于大部分學(xué)生來說,印象是不夠深刻的,體會也是不到位的。畢竟這部分內(nèi)容的學(xué)習(xí)對與學(xué)生來說也是有一定困難的,雖然是六年級的同學(xué),但他們的空間想象能力還是不夠的,需要實打?qū)嵉牟僮,讓他們有個直觀的認(rèn)識。

  所以我認(rèn)為我們的課堂上應(yīng)放手讓學(xué)生去操作,用直觀的操作,留下自己思考的痕跡,為進一步探索知識做好準(zhǔn)備。

  二、讓觀察更細致,尋找知識的聯(lián)系

  數(shù)學(xué)觀察力,是新課標(biāo)中對提出學(xué)生應(yīng)必備的一種重要數(shù)學(xué)能力。學(xué)生在操作的基礎(chǔ)上要學(xué)會觀察,挖掘知識之間的聯(lián)系,真正體現(xiàn)操作的價值。

  在圓柱的體積的教學(xué)中,教師讓學(xué)生去發(fā)現(xiàn)圓柱體與通過切割后形成的長方體之間的聯(lián)系時,不少學(xué)生都一時摸不著頭腦。這時,教師不妨給孩子一些觀察的提示,如:“拼成的長方體的底面積與原來圓柱的底面積有什么關(guān)系?為什么是相等的?”“拼成的長方體的.高與原來圓柱的高有什么關(guān)系?為什么是相等的?”通過學(xué)生直觀的觀察,讓學(xué)生去挖掘數(shù)學(xué)本質(zhì)上的一些聯(lián)系,讓學(xué)生在知識的探索過程中有一個完成的體驗過程,也對所學(xué)的知識有一個更好的理解。

  觀察是智慧的源泉,讓學(xué)生學(xué)會從變化的角度去觀察,發(fā)現(xiàn)知識之間的聯(lián)系,這也是一種令學(xué)生終身受益的學(xué)習(xí)方法。

  三、讓探索更深入,渴求方法的掌握

  通過操作與觀察,可以說學(xué)生積累了一定的認(rèn)知經(jīng)驗,這種經(jīng)驗我想不應(yīng)該只停留在一節(jié)課、一個內(nèi)容的學(xué)習(xí)中,可以延伸到很多知識的學(xué)習(xí)中去,從而形成一定的學(xué)習(xí)方法。就如在圓柱的體積的學(xué)習(xí)中,圓柱體轉(zhuǎn)化成已經(jīng)學(xué)過的長方體的體積來探究的這種方法在之前學(xué)生已經(jīng)接觸過,如:圓面積的計算方法、平行四邊形的面積計算方法,我們都是通過將未知的圖形轉(zhuǎn)化成已知圖形來探索面積計算的方法。如果我們在教學(xué)的過程中能夠很好地重視學(xué)生的操作經(jīng)驗積累,并形成一定的方法,相信學(xué)生在溝通新知和舊知之間的聯(lián)系時會更加的自然而然,也能順利的實現(xiàn)知識的正遷移。

  因此,在數(shù)學(xué)學(xué)習(xí)的過程中,應(yīng)該讓學(xué)生的探索過程更加的深入,形成一定的學(xué)習(xí)方法,為今后的學(xué)習(xí)積累知識經(jīng)驗的同時

圓柱的體積教學(xué)反思8

  《圓柱的體積》一課是在學(xué)生已經(jīng)學(xué)習(xí)了“圓的面積計算”和“長方體、正方體的體積”及圓柱的相關(guān)知識的基礎(chǔ)上教學(xué)的。

  教學(xué)時我注重引導(dǎo)學(xué)生經(jīng)歷“類比猜想 驗證說明”的探索過程。由于圓柱和長方體都是直柱體,長方體的體積是底面積×高,因而我引導(dǎo)學(xué)生猜想圓柱的體積是否也可以用底面積×高來計算。接著引導(dǎo)學(xué)生想辦法證明自己的猜想,也就是驗證說明。重視學(xué)生已有的經(jīng)驗,是新課改教學(xué)的重要理念,因而我引導(dǎo)學(xué)生回憶以前學(xué)習(xí)的“把未知的問題轉(zhuǎn)化為已知的問題”的方法,即“怎樣把圓柱轉(zhuǎn)化成已知的形體”的問題。大部分學(xué)生都能想到把“圓柱轉(zhuǎn)化成長方體”,接著就“怎樣將圓柱轉(zhuǎn)化成長方體”這個問題,讓他們觀察、研究、討論。學(xué)生受到以前“圓的面積”推導(dǎo)過程的啟發(fā),都知道應(yīng)把圓柱平均分成若干份切開,拼成近似的長方體。由于學(xué)生沒有學(xué)具,因此我用教具演示整個過程,然后引導(dǎo)學(xué)生思考:長方體底面的長相當(dāng)于圓柱底面的`什么?(周長的一半即π r)長方體底面的寬相當(dāng)于圓柱底面的什么?(圓的半徑r)再根據(jù)長方體的面積公式推導(dǎo)出圓柱體積公式V=π r2 × h或V=S×h。這樣讓學(xué)生親身經(jīng)歷知識的形成過程,為學(xué)生的主動探索與發(fā)現(xiàn)提供了空間。

  我覺得本課比較成功的一點是學(xué)生除了掌握本課的知識點外,還懂得了“類比猜想 驗證說明”的數(shù)學(xué)思想方法,可以說是既授之于“魚”,又授之于“漁”。

圓柱的體積教學(xué)反思9

  對《圓柱的體積》一節(jié),備課階段,我跟馮老師討論過,3.19下午,又全程聆聽了三位教師的同課異構(gòu),領(lǐng)略了他們不同個性的教學(xué)風(fēng)格。在我看來,盡管是同課異構(gòu),盡管是個性課堂,一些基本的原則還是要遵守的。例如,深入地理解教材,例如,盡可能地保持?jǐn)?shù)學(xué)的邏輯嚴(yán)密性,等等。

  對于這節(jié)教材的理解,最嚴(yán)重的分歧可能來自圓柱的體積公式。教材為什么給出的是“V=Sh”而不是“V=πrh”。我想,這里的原因大概有兩個:一是要統(tǒng)一(柱體的)體積公式,減輕學(xué)生的記憶負擔(dān)。事實上,V=Sh也確實更能體現(xiàn)柱體體積的本質(zhì),不同柱體體積的不同公式,只是進一步描述了它們的不同的S罷了。另一個原因,是為方便學(xué)生對公式推導(dǎo)過程的理解。當(dāng)圓柱被分割為有限個曲面三棱柱并拼為準(zhǔn)長方體時,半徑r只是接近而并沒有等于長方體的寬,只有這個分割被無限化(取極限)時,圓柱的半徑才能與長方體的寬相等。因此,與其讓學(xué)生去費解地或不求甚解地觀察“長方體的寬與圓柱的半徑的關(guān)系”,還不如只觀察兩者的底面積S。在我看來,這樣地處理,是新教材較舊教材高明之處,而有的教師之所以走回老路,恐怕是對新教材理解不到位的緣故。

  對于這節(jié)課的異構(gòu),分歧最大的地方可能是對探索或計算的側(cè)重,以及是否需要、是否可以有多種探索方法。從教材的表述看,這節(jié)課的新授完全圍繞著公式的提出(猜想)、推導(dǎo)(驗證)展開,其第一課時的教學(xué)重點無疑應(yīng)當(dāng)放在公式的探索上。至于探索的途徑或方法,我認(rèn)為,主要有兩個:一是轉(zhuǎn)化,把圓柱體轉(zhuǎn)化為長方體,二是驗算,假設(shè)猜想的公式是正確的,利用它算出結(jié)果并設(shè)法檢驗。例如,可以將圓柱形固體放到較大的液體量具中,通過比較圓柱體積的猜想值與液體體積的增長量,證明體積計算的正確性。也可以將圓柱體形狀的橡皮泥捏成長方體形狀,如果能夠在變形的過程中保持高的不變,則可以直接證明所猜想公式的正確性,否則,就要通過計算來作出間接的證明。如何理解教材中“堆硬幣”的意圖?我以為,這段教材的用意在于“提出猜想”而非驗證猜想。之所以這樣認(rèn)為,原因有二,一是教材的表述,它說的是:“從‘堆硬幣’來看,用‘底面積乘高’可以計算出圓柱的體積!倍皇钦f圓柱的體積就是底面積乘高’。二是如果作為驗證方法,在邏輯上就犯了循環(huán)論證的`錯誤,因為硬幣本身實際上也是圓柱,它的體積是否等于底面積乘高,本身就是要待驗證的。馮老師在教學(xué)中將其處理為“無數(shù)個圓疊加成為圓柱”,則使得它在邏輯上不再循環(huán)(雖然,這里的“積分過程”包含的極限思想要比“化圓為方”更難為小學(xué)生所理解。)。我認(rèn)為,由于“堆硬幣”的目的在于換一個角度提出猜想,教學(xué)中當(dāng)學(xué)生能夠提出猜想時,“疊圓成柱”的過程就顯得不那么非要不可了。而通過多媒體課件演示圓柱的“化圓為方”的過程卻是完全必要的。教師與學(xué)生一道經(jīng)歷了把十六等分的曲面三棱柱拼成“準(zhǔn)長方體”之后,可以引導(dǎo)學(xué)生觀察這個長方體的“近似性”,并啟發(fā)他們想象當(dāng)?shù)确值臄?shù)量增大到三十二、六十四、----的情況,在其想象之后,再用課件演示極限化的過程,大多數(shù)學(xué)生應(yīng)當(dāng)是可以真正理解的。

圓柱的體積教學(xué)反思10

  《圓柱的體積》不僅要讓學(xué)生掌握圓柱體積的計算方法,最重要的是掌握學(xué)習(xí)的思想方法(轉(zhuǎn)化),因此,教學(xué)新課前,復(fù)習(xí)了圓的面積公式的推導(dǎo)過程,以及長方體正方體的體積計算公式。為轉(zhuǎn)化做好了鋪墊。課上,出示課件:等底等高的長方體、正方體、圓柱,學(xué)生通過觀察,作出猜測:(1)圓柱的體積等于長方體和正方體的體積。(2)圓柱的體積也等于底面積乘高。猜測是否準(zhǔn)確呢?點燃學(xué)生的學(xué)習(xí)欲望。讓學(xué)生根據(jù)圓的面積公式的推導(dǎo)過程,讓學(xué)生遷移想:圓柱體能轉(zhuǎn)化成什么幾何形體,然后讓學(xué)生用教具驗證圓柱轉(zhuǎn)化成長方體過程,并討論思考:這個圓柱體與轉(zhuǎn)化后的長方體相比什么變了,什么沒變?從而得出結(jié)論圓柱的體積等于底面積乘以高。有一種推導(dǎo)過程是我沒有預(yù)設(shè)到的':一學(xué)生回答,長方體的長是圓柱的底面周長的一半,寬是底面半徑,高不變。所以圓柱體積=底面周長的一半×底面半徑×高。我沒有否定她的回答,接著又讓學(xué)生動手實踐操作,讓學(xué)生發(fā)現(xiàn)長方體與圓柱之間的聯(lián)系,利用圓的周長和面積把圓柱體積的也轉(zhuǎn)化成底面積乘以高。這樣有學(xué)生的積極主動的參與,不僅創(chuàng)造性的建立了數(shù)學(xué)模型而且發(fā)現(xiàn)圓柱體的轉(zhuǎn)換成長方體的規(guī)律,掌握了一種重要的學(xué)習(xí)方法,轉(zhuǎn)化。

  為了培養(yǎng)學(xué)生解題的靈活性,進行分層練習(xí),拓展知識,發(fā)散思維。如:已知圓柱底面積和高,怎樣求圓柱體積;已知圓柱底面半徑和高,怎樣求圓柱體積;已知圓柱底面直徑和高,怎樣求圓柱體積;已知圓柱底面周長和高,怎樣求圓柱體積;已知圓柱側(cè)面積和高,怎樣求圓柱體積;已知圓柱底面積和體積,怎樣求高;已知圓柱體積和高,怎樣求底面積等。

  在本節(jié)課的教學(xué)過程中還存在諸多的問題。

  1、演示圓柱的體積的時候,因為學(xué)生手中沒有學(xué)具,教師教具的局限性,演示時后面的學(xué)生看不清楚。

  2、在圓柱體經(jīng)過切割、拼接之后轉(zhuǎn)化為近似長方體

  的時候,應(yīng)多給后進生留有觀察、討論的時間,他們的思維反應(yīng)能力比其他學(xué)生較慢,應(yīng)給于他們一定的空間和時間,讓后進生也積極參與到課堂的學(xué)習(xí)中,使全班同學(xué)共同進步。

  3、在解決實際問題的時候,不僅要注重公式的應(yīng)用,還要注意計算能力的培養(yǎng)。

圓柱的體積教學(xué)反思11

  一、我在導(dǎo)入時,突破教材,有所創(chuàng)新 圓柱的體積的導(dǎo)入,課本是先讓學(xué)生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計算”,再接著馬上提問:“圓柱的體積怎樣計算呢?”讓學(xué)生們猜一猜。猜想計算方法固然有好處,但要讓學(xué)生馬上做實驗理解圓柱體積計算公式的推導(dǎo)過程,我覺得這樣教學(xué)引入,學(xué)生的思維跳躍得太快,銜接性不強,不利于學(xué)生理解和掌握實驗的用意,課堂效果就會明顯不佳。我認(rèn)為,不妨在回憶了長方體、正方體體積計算方法之后,接著復(fù)習(xí)一下圓面積計算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學(xué)生的思維走向正確的方向,這時教師的引導(dǎo)才是行之有效的。

  二、我教學(xué)新課時,實現(xiàn)人人參與,主動學(xué)習(xí) 學(xué)生進行數(shù)學(xué)探究時,教師應(yīng)給予充分的思考空間,創(chuàng)設(shè)實踐操作的條件,營造出思考的.環(huán)境氛圍。教學(xué)“圓柱的體積”時,由于學(xué)校教學(xué)條件差,沒有更多的學(xué)具提供給學(xué)生,只是由教師示范演示推導(dǎo)過程:把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開,照課本上的圖拼起來,圓柱體就轉(zhuǎn)化成一個近似的長方體;接著教師指導(dǎo)學(xué)生悟出這個長方體的長相當(dāng)于圓柱的哪一部分的長度,寬是圓柱哪一部分的長度,高是圓柱的哪一部分的長度,圓柱的體積怎樣計算的道理,從而推導(dǎo)出圓柱體積的計算公式。學(xué)生沒有親身參與操作,就缺乏情感空間感覺的體驗,而且這部分又是小學(xué)階段立體圖形的教學(xué)難點,學(xué)生得不到充分的思考空間,也不利于教師營造思考的環(huán)境,不便于學(xué)生思考如何利用已知圖形體積和教學(xué)思想去解決這一問題。學(xué)生缺乏行為、認(rèn)知的投入和積極的情感投入,所以,課堂效果差就可想而知了。

  三、我在 練習(xí)時,形式多樣,層層遞進 ,例題“練一練”中的題目都比較淺顯,學(xué)生還能容易掌握,但遇到多轉(zhuǎn)幾個彎的題目就束手無策了。所以,為了讓學(xué)生能熟練地掌握計算圓柱的體積,教師在設(shè)計練習(xí)時要多動腦,花心思。

圓柱的體積教學(xué)反思12

  本節(jié)課是學(xué)生在學(xué)習(xí)了長方體和立方體的基礎(chǔ)上進行教學(xué)的,它是一種比較常見的立體圖形,學(xué)生對圓柱都有初步的感性認(rèn)識。本節(jié)重點是圓柱的特征和圓柱側(cè)面積的計算。上課伊始,我先組織學(xué)生復(fù)習(xí)圓柱的特征、長方體和正方體體積以及圓的面積計算公式推導(dǎo)過程,由此引出圓柱的體積一課題。為了讓學(xué)生更好地理解和掌握圓柱體積的計算方法,為后面學(xué)習(xí)圓錐體積打下堅實的基礎(chǔ),因此在本節(jié)課的教學(xué)設(shè)計上我十分注重從生活情境入手,讓學(xué)生經(jīng)歷圓柱體積的探究過程,通過一系列的`數(shù)學(xué)活動,培養(yǎng)學(xué)生探究數(shù)學(xué)知識的能力和方法,同時在學(xué)習(xí)活動中體驗學(xué)習(xí)的樂趣。

  反思不足: 1、練習(xí)有些少。在學(xué)生練習(xí)這個環(huán)節(jié)中,最能反映學(xué)生掌握情況。應(yīng)該再從不同的角度設(shè)計多種練習(xí)題目來考察學(xué)生的知識掌握情況。2、本節(jié)課節(jié)奏較快,沒有去檢測一下學(xué)生每個環(huán)節(jié)掌握了沒有。3、數(shù)學(xué)要應(yīng)用于生活,應(yīng)該多出些有關(guān)生活實際的練習(xí)題。

圓柱的體積教學(xué)反思13

  《圓柱的體積》是在學(xué)生已經(jīng)學(xué)會計算長方體、正方體的體積,并且掌握圓柱基本特征的基礎(chǔ)上,引導(dǎo)學(xué)生探索并掌握圓柱的體積公式。通過教材教學(xué)學(xué)習(xí)后,下面我從教學(xué)過程、教學(xué)策略、教學(xué)技能等方面談?wù)勛约旱囊恍┓此肌?/p>

  一、在教學(xué)過程的設(shè)計方面

  1、導(dǎo)入時,力求突破教材,有所創(chuàng)新

  圓柱的體積的導(dǎo)入,課本是先讓學(xué)生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計算”,再接著馬上提問:“圓柱的體積怎樣計算呢?”讓學(xué)生們猜一猜。猜想計算方法固然有好處,但要讓學(xué)生馬上做實驗理解圓柱體積計算公式的推導(dǎo)過程,我覺得這樣教學(xué)引入,學(xué)生的思維跳躍得太快,銜接性不強,不利于學(xué)生理解和掌握實驗的用意,課堂效果就會明顯不佳。于是我設(shè)計時不妨在回憶了長方體、正方體體積計算方法之后,接著復(fù)習(xí)一下圓面積計算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學(xué)生的思維走向正確的方向,這時教師的引導(dǎo)才是行之有效的。不過應(yīng)該注意時間的控制,不能花費太多的時間。

  2、新課時,要實現(xiàn)人人參與,主動學(xué)習(xí)

  學(xué)生進行數(shù)學(xué)探究時,應(yīng)給予充分的思考空間,創(chuàng)設(shè)實踐操作的條件,營造出思考的環(huán)境氛圍。在推導(dǎo)圓柱體積公式過程時,我讓學(xué)生經(jīng)歷先想—觀察—動手操作的過程。把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開,照課本上的圖拼起來,圓柱體就轉(zhuǎn)化成一個近似的長方體;接著讓學(xué)生小組交流長方體的長和寬與圓柱的各部分有什么關(guān)系?圓柱的體積怎樣計算的道理,從而推導(dǎo)出圓柱體積的計算公式。這樣學(xué)生親身參與操作,有了空間感覺的體驗,,也有了充分的思考空間。這樣設(shè)計我覺得能突破難點,課堂效果很好。

  3、練習(xí)時,形式多樣,層層遞進

  例題“練一練”中的題目都比較淺顯,學(xué)生還能容易掌握,但遇到多轉(zhuǎn)幾個彎的題目就束手無策了。所以,為了讓學(xué)生能熟練地掌握計算圓柱的體積,我在設(shè)計練習(xí)時動了一番腦,花心思去考慮怎樣才能讓學(xué)生用最短的時間完成不同類型的題目。通過反思,我概括出五種類型: a。已知圓柱底面積(s)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=sh。

  b。已知圓柱底面半徑(r)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=πr2h。

  c。已知圓柱底面直徑(d)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(d/2)2h。

  d。已知圓柱底面周長(c)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(c÷π÷2)2h。

  e。已知圓柱側(cè)面積(s側(cè))和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(s側(cè)÷h÷π÷2)2h。

  因為是第一課時所以在鞏固練習(xí)中,只要從前四種類型去考慮,做到面面俱到,逐層深入,由易到難,使學(xué)生真正掌握好計算圓柱體積的方法另外,還設(shè)計了解決生活中的問題,讓學(xué)生能學(xué)以致用解決生活中的問題。

  二、在教學(xué)策略方面

  我采用多媒體的直觀教具相結(jié)合的手段,在圓柱體積公式推導(dǎo)過程中指導(dǎo)學(xué)生充分利用手中的學(xué)具、教具,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流、總結(jié)歸納等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識,從而促進了學(xué)生的思維發(fā)展。而在鞏固練習(xí)這一環(huán)節(jié),我用多媒體發(fā)揮它大容量、節(jié)省時間的優(yōu)點。

  三、在教學(xué)技能方面

  學(xué)生通過實踐、探索、發(fā)現(xiàn),得到的知識是“活”的,這樣的知識對學(xué)生自身智力和創(chuàng)造力發(fā)展會起到積極的推動作用。所有的答案也不是老師告訴的,而是學(xué)生在自己艱苦的學(xué)習(xí)過程中發(fā)現(xiàn)并從學(xué)生的口里說出來的,這樣的知識具有個人意義,理解更深刻。但是我覺得這個引導(dǎo)的.過程需要教師有認(rèn)真準(zhǔn)備,隨時能解決課堂上可能出現(xiàn)的一些問題。傳統(tǒng)的教學(xué)只關(guān)注教給學(xué)生多少知識,把學(xué)生當(dāng)成知識的“容器”。學(xué)生的學(xué)習(xí)只是被動地接受、記憶、模仿,往往學(xué)生只知其然而不知其所以然,其思維根本得不到發(fā)展。而我在本課創(chuàng)設(shè)了豐富的教學(xué)情景。

  四、教學(xué)要達到三個目的

  一是認(rèn)識等底等高的含義,便于判斷圓柱可以轉(zhuǎn)化成與它等底等高的長方體。

  二是從長方體與正方體等底等高,體積也相等的事實,引發(fā)等底等高的圓柱與長方體的體積也相等的猜想,形成把圓柱轉(zhuǎn)化成長方體的活動心向。

  三是復(fù)習(xí)長方體、正方體的體積公式,圓柱的體積最終也要這樣計算。

圓柱的體積教學(xué)反思14

  圓柱的體積是幾何知識的綜合運用,它是在學(xué)生了解了圓柱的特征、掌握了長方體和正方體體積以及圓的面積計算公式推導(dǎo)過程的基礎(chǔ)上進行教學(xué)的。在本節(jié)課的教學(xué)設(shè)計上我十分注重從生活情境入手,讓學(xué)生經(jīng)歷圓柱體積的探究過程,通過一系列的數(shù)學(xué)活動,培養(yǎng)學(xué)生探究數(shù)學(xué)知識的能力和方法,同時在學(xué)習(xí)活動中體驗學(xué)習(xí)的樂趣。從本節(jié)課教學(xué)目標(biāo)的達成來看,較好地體現(xiàn)了以下幾方面:

  一、注重知識之間的內(nèi)在聯(lián)系。

  圓柱的體積的導(dǎo)入,先讓學(xué)生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計算”,接著復(fù)習(xí)一下圓面積計算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學(xué)生的思維走向正確的方向,這時教師的引導(dǎo)才是行之有效的,并讓學(xué)生建立起更深層的空間幾何概念。

  二、引導(dǎo)學(xué)生經(jīng)歷知識探究的全過程。

  數(shù)學(xué)學(xué)習(xí)過程充滿著觀察、實驗、模擬、推斷等探索性與挑戰(zhàn)性活動,因此,動手實踐、自主探究、合作交流是《課程標(biāo)準(zhǔn)》所倡導(dǎo)的數(shù)學(xué)學(xué)習(xí)的主要方式。在本節(jié)課提示課題后,我先引導(dǎo)學(xué)生獨立思考要解決圓柱的體積問題,可以怎么辦?學(xué)生通過思考很快確定打算把柱轉(zhuǎn)化成長方體。那么怎樣來切割呢?此時利用生活中的“蘿卜”引導(dǎo)學(xué)生思考。同學(xué)們有了圓面積計算公式推導(dǎo)的經(jīng)驗,經(jīng)過思考得出:把圓柱的底面沿直徑分成若干等份。在此基礎(chǔ)上,小組拿出學(xué)具進行了動手操作,拼成了一個近似的長方體。并利用多媒體動畫演示,重現(xiàn)推導(dǎo)過程加深學(xué)生印象。同學(xué)們在操作、比較中,圍繞圓柱體和長方體之間的聯(lián)系,抽象出圓柱體的體積公式。這個過程,學(xué)生從形象具體的知識形成過程中,認(rèn)識得以升華(較抽象的`認(rèn)識——公式)。

  三、注重學(xué)法指導(dǎo)和數(shù)學(xué)思想方法的滲透。

  “學(xué)會學(xué)習(xí)”是對學(xué)生“學(xué)”的最高要求,因此在教學(xué)中不但要教給學(xué)生知識,更要教給學(xué)生學(xué)習(xí)的方法,讓學(xué)生終身受用。在本節(jié)課的教學(xué)中,我把“觀察、猜想、驗證”的學(xué)法指導(dǎo),貫穿于整個學(xué)習(xí)過程,使學(xué)生學(xué)得主動有效。在探究方法的引導(dǎo)上從回憶圓的面積公式推導(dǎo)入手,確定轉(zhuǎn)化的方法,體驗轉(zhuǎn)化的過程,驗證轉(zhuǎn)化的結(jié)果,使“轉(zhuǎn)化”、“極限”等數(shù)學(xué)思想在課中得到良好滲透,學(xué)生進一步體會到科學(xué)、條理的數(shù)學(xué)思維方式,從而發(fā)展了學(xué)生的數(shù)學(xué)能力。

  本課中還存在很多不足在例如探究過程中沒有充分的給予學(xué)生說一說、指一指的時間,在引導(dǎo)學(xué)生思考已知圓柱底面半徑(r)和高(h)、已知圓柱底面直徑(d)和高(h)、已知圓柱底面周長(c)和高(h)三種情況時,教師引導(dǎo)過多,應(yīng)給予學(xué)生更充分的思考空間,讓其考慮如果沒有底面積,知道哪個條件也可以求圓柱體積。最后,在練習(xí)中缺少反饋,學(xué)生做完練習(xí)后,應(yīng)及時做到直觀反饋,總結(jié)優(yōu)缺點,指導(dǎo)學(xué)生做題。

圓柱的體積教學(xué)反思15

  一、讓操作更詳實,留下思考的痕跡

  動手實踐、自主探索、合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。組織學(xué)生在實踐操作中探究發(fā)現(xiàn)規(guī)律,從感性到理性,從實踐到認(rèn)識,從具體到抽象,引導(dǎo)學(xué)生積極動手動腦、概括分析、抽象推理等,這不僅有利于學(xué)生思維的發(fā)展,而且也可以加深學(xué)生對數(shù)學(xué)知識的理解和掌握。尤其是對于幾何知識的學(xué)習(xí),課堂教學(xué)中的動手操作就顯得更加重要。究竟自己在教學(xué)的時候是否用好了學(xué)生的操作,讓學(xué)生對操作的過程有深刻的體會與認(rèn)識,在操作中是否激起了學(xué)生的思考。留下自己思考的痕跡,為進一步探索知識做好準(zhǔn)備。

  二、讓觀察更細致,尋找知識的聯(lián)系

  數(shù)學(xué)觀察力,是新課標(biāo)中對提出學(xué)生應(yīng)必備的一種重要數(shù)學(xué)能力。學(xué)生在操作的基礎(chǔ)上要學(xué)會觀察,挖掘知識之間的聯(lián)系,真正體現(xiàn)操作的價值。通過學(xué)生直觀的觀察,讓學(xué)生去挖掘數(shù)學(xué)本質(zhì)上的一些聯(lián)系,讓學(xué)生在知識的探索過程中有一個完成的體驗過程,也對所學(xué)的'知識有一個更好的理解。

  三、讓探索更深入,渴求方法的掌握

  如果我們在教學(xué)的過程中能夠很好地重視學(xué)生的操作經(jīng)驗積累,并形成一定的方法,相信學(xué)生在溝通新知和舊知之間的聯(lián)系時會更加的自然而然,也能順利的實現(xiàn)知識的正遷移。因此,在數(shù)學(xué)學(xué)習(xí)的過程中,應(yīng)該讓學(xué)生的探索過程更加的深入,形成一定的學(xué)習(xí)方法,為今后的學(xué)習(xí)積累知識經(jīng)驗的同時

【圓柱的體積教學(xué)反思】相關(guān)文章:

圓柱的體積教學(xué)反思12-09

圓柱的體積教學(xué)反思02-18

圓柱的體積的教學(xué)反思02-27

《圓柱的體積》教學(xué)反思10-26

圓柱的體積教學(xué)反思[優(yōu)秀]07-09

圓柱的體積教學(xué)反思15篇04-17

圓柱體積的教學(xué)反思12-02

《圓柱體體積》教學(xué)反思02-19

《圓柱體積》教學(xué)反思04-20