丁香花无码AV在线,欧美日韩国产色,年轻人手机在线免费视频,伊人成人在线,可以直接免费观看的av网站,日本三级香港三级人妇99,亚洲免费二区

五年級數(shù)學(xué)上冊解簡易方程教學(xué)反思

時間:2024-07-09 09:17:27 教學(xué)反思 我要投稿

五年級數(shù)學(xué)上冊解簡易方程教學(xué)反思

  作為一名人民教師,教學(xué)是重要的任務(wù)之一,借助教學(xué)反思我們可以學(xué)習(xí)到很多講課技巧,教學(xué)反思要怎么寫呢?以下是小編為大家收集的五年級數(shù)學(xué)上冊解簡易方程教學(xué)反思,歡迎大家分享。

五年級數(shù)學(xué)上冊解簡易方程教學(xué)反思

五年級數(shù)學(xué)上冊解簡易方程教學(xué)反思1

  學(xué)生經(jīng)歷由天平上的具體操作抽象為代數(shù)問題的過程,能用等式的性質(zhì)(天平平衡的道理)列出方程,對于解比較簡單的方程,學(xué)生并不陌生。

  比如:x+4=7學(xué)生能夠很快說出x=3,但是就方程的書寫規(guī)范來說,有必要一開始就強(qiáng)化訓(xùn)練,老師規(guī)范的板書,以發(fā)揮首次感知先入為主的強(qiáng)勢效應(yīng),促進(jìn)良好的書寫習(xí)慣的形成。對于稍復(fù)雜的方程要放手讓學(xué)生去試一試,這樣就可以使探究式課堂教學(xué)進(jìn)入一個理想的境界。

  不難看出,學(xué)生經(jīng)歷了把運算符號“+”看錯成了“-”,又自行改正的過程,在這一過程中學(xué)生體驗到了緊張、焦急、期待,成功的感覺,這時的數(shù)學(xué)學(xué)習(xí)已進(jìn)入了學(xué)生的內(nèi)心,并成為學(xué)生生命成長的過程,真正落實了《數(shù)學(xué)課程標(biāo)準(zhǔn)》中“在數(shù)學(xué)學(xué)習(xí)活動中獲得成功的體驗,鍛煉克服困難的意志,建立自信心”的目標(biāo),在這個思維過程中,學(xué)生獲得了情感體驗和發(fā)現(xiàn)錯誤又自己解決問題的機(jī)會。

  老師以人為本,充分尊重學(xué)生,也體現(xiàn)在耐心的'等待,熱切的期待的教學(xué)行為上,老師的教學(xué)行為充滿了人文關(guān)懷的氣息,微笑的臉龐、期待的眼神、鼓勵的話語,無時無刻不使學(xué)生感到這不僅是數(shù)學(xué)學(xué)習(xí)的過程,更是一種生命交往的過程,學(xué)生有了很安全的心理空間,不然,他怎么會對老師說“老師,我太緊張了”,這是學(xué)生對老師的信任和自己不安的復(fù)雜情緒的表現(xiàn)。反思我們的教學(xué)行為,如果在課堂中多一些耐心和期待,就會有更多的愛灑向更多的學(xué)生,學(xué)生的人生歷程中就會多一份信心,多一份勇氣,多一份靈氣。

五年級數(shù)學(xué)上冊解簡易方程教學(xué)反思2

  數(shù)學(xué)課程標(biāo)準(zhǔn)(實驗稿)改變了小學(xué)階段解方程方法的教學(xué)要求,采用了等式的性質(zhì)來教學(xué)解方程,F(xiàn)將解方程的新舊方法舉例如下:

  老方法:

  x + 4 = 20

  x = 20-4

  依據(jù)運算之間的關(guān)系:一個加數(shù)等于和減另一個加數(shù)。

  新方法:

  x + 4 = 20

  x + 4-4=20-4

  依據(jù)等式的基本性質(zhì)1:等式兩邊加上或減去相等的數(shù),等式不變。

  改革的原因(摘自教學(xué)參考書):

  新教材編寫者如此說明:長期以來,小學(xué)教學(xué)簡易方程時,方程變形的依據(jù)總是加減運算的關(guān)系或乘除運算之間的關(guān)系,這實際上是用算術(shù)的思路求未知數(shù)。到了中學(xué)又要另起爐灶,引入等式的基本性質(zhì)或方程的同解原理來教學(xué)解方程。小學(xué)的思路及其算法掌握得越牢固,對中學(xué)代數(shù)起步教學(xué)的負(fù)遷移就越明顯。因此,現(xiàn)在根據(jù)《標(biāo)準(zhǔn)》的要求,從小學(xué)起就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法。這就較為徹底地避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強(qiáng)中小學(xué)數(shù)學(xué)教學(xué)的銜接。

  從這我們不難看出,為了和中學(xué)教學(xué)解方程的方法保持一致,是此次改革的主要原因。

  那么,小學(xué)生學(xué)這樣的方法,實際操作中會出現(xiàn)什么樣的情況?這樣的改革有沒有什么問題? 在我的教學(xué)過程中真的出現(xiàn)了問題 。

  1、無法解如a-x=b和a÷x=b此類的方程

  新教材認(rèn)為,利用等式基本性質(zhì)解方程后,解象x+a=b與x-a=b一類的方程,都可以歸結(jié)為等式兩邊同時減去(加上)a;解如ax=b與x÷a=b一類的方程,都可以歸結(jié)為等式兩邊同時除以(乘上)a。這就是所謂“相比原來方法,思路更為統(tǒng)一”的優(yōu)越性。然而,它有一個相應(yīng)的調(diào)整措施值得我們注意,那就是它把形如a-x=b和a÷x=b的方程回避掉了。原因是小學(xué)生還沒有學(xué)習(xí)正負(fù)數(shù)的四則運算,利用等式的基本性質(zhì)解a-x=b,方程變形的過程及算理解釋比較麻煩;而a÷x=b的方程,因為其本質(zhì)是分式方程,依據(jù)等式的基本性質(zhì)解需要先去分母,也不適合在小學(xué)階段學(xué)習(xí)。

  我認(rèn)為為了要運用等式基本性質(zhì),卻回避掉了兩類方程,這似乎不妥。更重要的是,回避這兩類方程,新教材認(rèn)為并不影響學(xué)生列方程解決實際問題。因為當(dāng)需要列出形如a-x=b或a÷x=b的方程時,總是要求學(xué)生根據(jù)實際問題的數(shù)量關(guān)系,列成形如x+b=a或bx=a的方程。但我認(rèn)為,這樣的處理方法,有時更 會無法避免地直接和方程思想發(fā)生矛盾。

  如“3千克梨比5千克桃子貴0.5元。梨每千克2.5元,桃子每千克多少元?”合理的做法應(yīng)是“設(shè)桃子每千克x元”,從順向思考,列出方程為“2.5×3-5x=0.5”。然而,按新教材的.編排,因為學(xué)生現(xiàn)在不會解這樣的方程,所以要根據(jù)數(shù)量關(guān)系,轉(zhuǎn)列成“5x+0.5=2.5×3”之類的方程。又如:課本第62頁中的“爸爸比小明大28歲,小明Х歲,爸爸40歲!焙芏鄬W(xué)生根據(jù)“爸爸比小明大28歲”列出40-Х=28,可是無法求解,所以又轉(zhuǎn)成Х+28=40。

  很明顯,第二個方程是和方程思想的基本理念相違背的。我們知道,方程最大的意義,就是讓未知數(shù)參與進(jìn)式子,使考慮問題更加直接自然。為實現(xiàn)這個目標(biāo),很重要的一點,就是列式時應(yīng)盡量順向思考,以降低思考的難度。這是體現(xiàn)方程方法的優(yōu)越性必然要求。事實上,如果學(xué)生能夠列成“5x+0.5=2.5×3”“ Х+28=40”那就說明他已經(jīng)非常熟悉其中的數(shù)量關(guān)系了,此時,用算術(shù)方法即可,哪還有列方程來解的必要呢?我們又怎談引導(dǎo)學(xué)生認(rèn)識方程的優(yōu)越性呢?

  我們不難看出,根據(jù)現(xiàn)實情境列方程解決問題,x當(dāng)作減數(shù)、當(dāng)作除數(shù),應(yīng)當(dāng)是很常見、很必要的現(xiàn)象。要學(xué)生學(xué)會解這些方程,是正常的教學(xué)要求,這是不應(yīng)該回避的,否則,我們的教學(xué)就會顯得片面和狹隘。

  2、解方程的書寫過程太繁瑣

  教材要求,在學(xué)生用等式基本性質(zhì)解方程時,方程的變形過程應(yīng)該要寫出來,等到熟練以后,再逐步省略。這樣的要求,在實際操作中,帶來了書寫上的繁瑣。

  因為用等式基本性質(zhì)解方程,每兩步才能完成一次方程的變形。這相對于簡單的方程,尚沒什么,但對一些稍復(fù)雜的方程,其解的過程就顯得太繁瑣了。

  從這兩個方面來看,小學(xué)里學(xué)習(xí)等式的基本性質(zhì),并運用它來解方程,在實際操作中,也存在許多的現(xiàn)實問題。那么,如果說用算術(shù)思路解方程對初中學(xué)習(xí)有負(fù)遷移,需要改革,現(xiàn)在改成用等式基本性質(zhì)解方程,同樣出現(xiàn)問題,那我們又如何是好呢?

五年級數(shù)學(xué)上冊解簡易方程教學(xué)反思3

  人教版五年級上冊《解簡易方程》這個單元中,教材是通過等式的基本性質(zhì)來解方程,這個方法雖然說使得小學(xué)的知識與初中的知識更加的接軌,讓方程的解法更加的簡單。從教材的編排上,整體難度下降,對學(xué)生以后的發(fā)展是有利的。但是教材中故意避開了減數(shù)和除數(shù)為未知數(shù)的方程,如:a-x=b或a÷x=b,要求學(xué)生根據(jù)實際問題的數(shù)量關(guān)系,列成如x+b=a或bx=a的方程。這樣的處理方法,有時也會無法避免地直接和方程思想發(fā)生矛盾。例如“爸爸比小明大28歲,小明Х歲,爸爸40歲!焙芏鄬W(xué)生列出了這樣的方程:40-Х=28,方程列的是沒有任何問題的,但是應(yīng)該怎么解呢?允不允許學(xué)生用四則運算各部分的關(guān)系來解方程?是否該向?qū)W生講解方法?還是讓學(xué)生把此方程改成教材要求的那樣的方程?如果要改成教材要求的方程,那就是在向?qū)W生傳達(dá)這樣的思想:這樣的`列法是不被認(rèn)可的,那么以后在學(xué)習(xí)“未知數(shù)是減數(shù)和除數(shù)的方程”時,學(xué)生的思維不就又和現(xiàn)在沖突了嗎?現(xiàn)在學(xué)習(xí)的節(jié)方程中,學(xué)生很容易看見加法就減,看見減法就加,看見乘法就除,看見除法就乘,如把30÷Ⅹ=15的解法教給學(xué)生,能熟練掌握并運用的學(xué)生很少,對大部分學(xué)生來說越教越是糊涂,把本來剛建構(gòu)的解方程方法打破了。如果不安排,那么每次在出現(xiàn)的時故意回避嗎?

  在教學(xué)列方程解加減乘除解決問題第一課時,我是這樣處理的。先出示做一做的題目,這題更接近學(xué)生的實際,學(xué)生也能更好理解數(shù)量關(guān)系。小明今年身高152厘米,比去年長高了8厘米。小明去年身高多少?先讓學(xué)生讀題理解題目中有哪幾個量?引導(dǎo)學(xué)生進(jìn)行概括,去年的身高、今年的身高、相差數(shù)。追問:這三個量之間有怎樣的相等關(guān)系呢?

  去年的身高+長高的8cm=今年的身高

  今年的身高-去年的身高=長高的8cm

  今年的身高-長高的8cm=去年的身高

  你能根據(jù)這三個數(shù)量關(guān)系列出方程嗎?學(xué)生嘗試列方程。幾乎全班學(xué)生都是正確的。

  X+8=152 152-x=8 152-8=x

  追問學(xué)生你對哪個方程有想法?學(xué)生一致認(rèn)為對第三個方程有想法?生1:這個根本沒有必要寫x,因為直接可以計算了。生2:x不寫,就是一個算式,直接可以算了。我肯定到:列算式解決實際問題時,未知數(shù)始終作為一個“解決的目標(biāo)”不參加列式運算,只能用已知數(shù)和運算符號組成算式,所以這樣的x就沒有必要。接著讓學(xué)生解這兩個方程X+8=152 、152-x=8方程。學(xué)生發(fā)現(xiàn)152-x=8解出來的解是不正確的。告訴學(xué)生減數(shù)為未知數(shù)的方程我們小學(xué)階段不作要求,所以你們就無法解答了。接著,我再引導(dǎo)學(xué)生觀察這三個數(shù)量關(guān)系,他們之間有聯(lián)系嗎?其實減法是加法的逆運算,是有加法轉(zhuǎn)變過來。因此,我們在思考數(shù)量關(guān)系時,只要思考加法的數(shù)量關(guān)系,這是順向思維,解題思路更加直截了當(dāng),降低了思考的難度。接著只要把未知數(shù)以一個字母(如x)為代表和已知數(shù)一起參加列式運算x+b=a,體會列方程解決問題的優(yōu)越性。這就是我們今天學(xué)習(xí)的一種新的解決問題的方法——列方程解決問題。

  接著用同樣的教學(xué)方法探究bx=a的解決問題。

  我這樣的教學(xué)不知道是否合理?其實小學(xué)生在學(xué)習(xí)加減法、乘除法時,早就對四則運算之間的關(guān)系有所感知,并積累了比較豐富的感性經(jīng)驗。要不要運用等式的性質(zhì)對學(xué)生再加以概括呢?

五年級數(shù)學(xué)上冊解簡易方程教學(xué)反思4

  新課程的改革,使得小學(xué)的知識要體現(xiàn)與初中更加的接軌,五年級上冊第四單元“解簡易方程”中進(jìn)行了一次新的改革。要求方程的解法要根據(jù)天平的原理來進(jìn)行解答,也就是說要通過等式的性質(zhì)來解方程,這一方法雖然說讓方程的'解法找到了本質(zhì)的東西。老教材中解方程的教學(xué)是利用加減乘除各部分之間的關(guān)系解決的,學(xué)生只要掌握了一個加數(shù)=和-另一個加數(shù),減數(shù)=被減數(shù)-差,被減數(shù)=差+減數(shù),一個因數(shù)=積÷另一個因數(shù),除數(shù)=被除數(shù)÷商,被除數(shù)=商×除數(shù)這些關(guān)系式,不管是簡單的還是復(fù)雜的方程都可以用這些關(guān)系式去解。而我們新教材卻完全不是這種方法,它是利用天平的平衡原理得到等式的基本性質(zhì),即等式的兩邊同時加上或減去同一個數(shù)等式不變,和等式的兩邊同時乘或除以同一個數(shù)(0除外),等式不變進(jìn)行解方程的 新教材如果能把天平的規(guī)律教學(xué)得到位,這樣就能把等式性質(zhì)掌握好,等式性質(zhì)掌握的好了解起方程來也有規(guī)律可循了。于是,我在教學(xué)時充分地利用天平實物以及課件讓學(xué)生深入地理解天平的平衡規(guī)律,從而順利地揭示出了等式的性質(zhì)。這樣在解簡易方程時學(xué)生很容易掌握方法。知道未知數(shù)加(或減)一個數(shù)時,只要在方程的兩邊同時減(或加)同一個數(shù),未知數(shù)乘(或除)一個數(shù)時,只要在方程的兩邊同時除(或乘)同一個數(shù)即可。一般不會出現(xiàn)運算符號弄錯的現(xiàn)象了。

  為新課奠定了基礎(chǔ)。在突破重難點時,我設(shè)計借助天平理解解方程的過程,當(dāng)學(xué)生根據(jù)例1圖意列出方程X+3=9時,我把皮球換成方格出現(xiàn)在大屏幕上時,問學(xué)生:“要得出X的值,在天平上應(yīng)如何操作?”由于問題提的不符合學(xué)生實際學(xué)習(xí)情況,學(xué)生一時不知如何回答。我連忙糾正問道:“天平左邊有一個X和一個3,怎么讓方程左邊就剩下X呢?”學(xué)生馬上回答:“減去3!睅煟骸疤炱接疫呉矐(yīng)該怎么辦?”生:“也減去3.”師:“為什么?”生:“天平的兩邊同時減去相同的數(shù),天平仍然保持平衡!蔽乙騽堇麑(dǎo)地使學(xué)生學(xué)習(xí)解方程的方法及書寫格式。課堂練習(xí)時間也不充裕,致使擴(kuò)展思維題學(xué)生沒時間去思考,沒有達(dá)到預(yù)想的課堂效果。一節(jié)課雖然結(jié)束了,卻給我留下了難忘的印象,它將永遠(yuǎn)警示著我認(rèn)真鉆研教材,備好每一節(jié)課。

五年級數(shù)學(xué)上冊解簡易方程教學(xué)反思5

  新課程的改革,使得小學(xué)的知識要體現(xiàn)與初中更加的接軌,五年級上冊第四單元“解簡易方程”中進(jìn)行了一次新的改革。要求方程的解法要根據(jù)天平的原理來進(jìn)行解答,也就是說要通過等式的性質(zhì)來解方程,這一方法雖然說讓方程的解法找到了本質(zhì)的東西,但是也讓我感到了許多困惑

  1、從教材的編排上,整體難度下降,有意避開了,形如:45-x=23等類型的題目。把用等式解決的方法單一化了。在實際教學(xué)中我們要求學(xué)生較熟練地利用等式的方法來解方程,但用這樣的方法來解方程之后,書本不再出現(xiàn)x前面是減號或除號的方程題了,學(xué)生在列方程解實際應(yīng)用時,我們并不能刻意地強(qiáng)調(diào)學(xué)生不會列出x在后面的方程,我們更頭痛于學(xué)生的實際解答能力。在實際的方程應(yīng)用中,這種情況是不可避免的。很顯然這存在著目前的局限性了。對于好的`學(xué)生來說,我們會讓他們嘗試接受解答x在后面這類方程的解答方法,就是等號二邊同時加上x,再左右換位置,再二邊減一個數(shù),真有點麻煩了。而且有的學(xué)生還很難掌握這樣方法。

  2、 內(nèi)容看似少實際教得多。難度下降后,看起來教師要教的內(nèi)容變得少了,可以實際上反而是多了。教師要給他們補(bǔ)充x前面是除號或減號的方程的解法。要教他們列方程時怎么避免x前面是除號或減號的方程的出現(xiàn)等等。

【五年級數(shù)學(xué)上冊解簡易方程教學(xué)反思】相關(guān)文章:

解簡易方程的教學(xué)反思02-22

解簡易方程教學(xué)反思04-07

五年級上冊數(shù)學(xué)《解簡易方程》教學(xué)反思04-12

五年級上冊數(shù)學(xué)解簡易方程教學(xué)反思04-07

五年級數(shù)學(xué)《解簡易方程》教學(xué)反思03-30

五年級上冊簡易方程教學(xué)反思03-10

五年級數(shù)學(xué)上冊《簡易方程》教學(xué)反思04-05

簡易方程教學(xué)反思02-26

《簡易方程》教學(xué)反思03-11