乘法公式教學(xué)反思
作為一名到崗不久的人民教師,課堂教學(xué)是我們的工作之一,寫教學(xué)反思可以很好的把我們的教學(xué)記錄下來,那么應(yīng)當(dāng)如何寫教學(xué)反思呢?以下是小編精心整理的乘法公式教學(xué)反思,僅供參考,希望能夠幫助到大家。
乘法公式教學(xué)反思1
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者!苯虒W(xué)中我們應(yīng)充分引導(dǎo)我學(xué)生去發(fā)現(xiàn)問題、解決問題,才能很好地應(yīng)用數(shù)學(xué)知識我在教學(xué)乘法的運算定律這部分知識時,作了以下一些調(diào)整:
1、按照教參中的教學(xué)進(jìn)程安排,乘法交換律和結(jié)合律需要分兩課時完成。我認(rèn)為將兩課時可以合并為一課時。首先,加法的交換律和結(jié)合律與乘法的交換律和結(jié)合律比較相似,由兩條加法定律猜想到兩條乘法定律,難度不大,十分自然。其次,兩條乘法定律一起學(xué),一方面有利于比較區(qū)分;另一方面,更利于實際應(yīng)用,事實上在計算應(yīng)用中,這兩條定律通常是結(jié)合在一起應(yīng)用的。但是教學(xué)后發(fā)現(xiàn),學(xué)生在應(yīng)用時情況較好,但對兩條定律的區(qū)分不夠明確。于是,在接下來的運用運算定律進(jìn)行簡算運算教學(xué)時,我出示了大量的習(xí)題,分組沖關(guān)奪紅旗比賽,讓學(xué)生通過計算從中去發(fā)現(xiàn)問題,并從數(shù)學(xué)角度去探討問題,然后再通過舉例驗證,讓學(xué)生直觀感知乘法中的一些變化規(guī)律——任意交換因數(shù)的位置,積不變;因數(shù)位置不變,改變計算順序,積也不變。這樣,學(xué)生參與非常積極,在驗證的過程中學(xué)生把乘法中的這種變化規(guī)律,心領(lǐng)神會。由此,學(xué)生在進(jìn)行簡算過程中,得心應(yīng)手,不但學(xué)得愉快,而且用得靈活,效果較好。
2、乘法分配律的教學(xué)則是引導(dǎo)學(xué)生自己探索、發(fā)現(xiàn)。利用學(xué)生已經(jīng)掌握的知識進(jìn)行遷移,從學(xué)生比較熟悉的生活實際問題引入,學(xué)生較易接受與理解。在我的提示指導(dǎo)下,漸漸發(fā)現(xiàn)了幾組算式之間存
在著的聯(lián)系,找到規(guī)律,再通過舉例,驗證自己所找到的規(guī)律,并且再啟發(fā)他們說出了乘法分配律的字母表達(dá)式。這樣既讓學(xué)生有獨立觀察、思考、練習(xí)的機會,又安排了小組討論,讓每個同學(xué)都有發(fā)言的機會,使全體學(xué)生的'學(xué)習(xí)愿望都能得到滿足。因此,這堂課學(xué)生參與的積極性相當(dāng)高,課堂氣氛比較活躍,回答問題的面也比較廣,從學(xué)生的練習(xí)反饋情況來看,對這個內(nèi)容還是掌握較好。
從實際教學(xué)的情況來看,這樣的調(diào)整教學(xué)效果還不錯,我自己認(rèn)為已基本達(dá)到了我課前所設(shè)定的目標(biāo)。讓學(xué)生參與知識的形成過程,培養(yǎng)學(xué)生概括、分析、推理的能力,并滲透“從特殊到一般,再由一般到特殊”的認(rèn)識事物的方法,提高數(shù)學(xué)的應(yīng)用意識。但由于學(xué)生人數(shù)太多,我在面向全體方面做的還不夠,使得個別不愛發(fā)言的同學(xué),很少有表現(xiàn)自己的機會,這也是我在以后的教學(xué)當(dāng)中值得注意,應(yīng)該改進(jìn)的地方。
乘法公式教學(xué)反思2
乘法公式是整式乘法的重要內(nèi)容,也是今后學(xué)習(xí)數(shù)學(xué)的重要工具,要學(xué)好這部分,除了要注意1、掌握公式的幾何意義比如完全平方公式。2、注意掌握公式的結(jié)構(gòu)特點,掌握公式的結(jié)構(gòu)特點是正確使用公式的前提。如平方差公式的結(jié)構(gòu)特點是:公式的左邊是這兩個二項式的積,且這兩個二項式有一項完全相同,另一項互為相反數(shù),公式的右邊是這兩項的平方差,且是左邊的相同的一項的平方減去互為相反數(shù)的一項的平方。掌握了這些特點,就能在各種情況下正確運用平方差公式進(jìn)行計算了。3、注意公式中字母的廣泛意義,乘法公式中的字母既可以代表任意的數(shù),又可以代表代數(shù)式,只有注意到字母所表示的意義的廣泛性,就能擴大乘法公式的應(yīng)用范圍。
以上3點是掌握任何公式必備的條件,但是在掌握以上三點,我們要高瞻遠(yuǎn)矚,對課本中的教材必須要看的更深也更廣,所以我就在學(xué)生對乘法公式的基礎(chǔ)知識掌握的還不錯的基礎(chǔ)上,專門提出了今天的內(nèi)容,可以說是帶點專題性質(zhì)也可以說是課本知識的一種延續(xù),讓學(xué)生還要注意乘法公式的逆用,不僅要掌握乘法公式的正向應(yīng)用,還要注意掌握公式的逆向應(yīng)用,乘法公式均可逆用,特別是完全平方公式的逆用就是配方,配方是一種很重要的數(shù)學(xué)思想方法,它的應(yīng)用非常廣泛。還要注意乘法公式的變形,要善于對公式變形的應(yīng)用,在解題中充分體現(xiàn)應(yīng)用公式的思維靈活性和廣泛性。同學(xué)們在運用公式時,不應(yīng)拘泥于公式的形式而要深刻理解、靈活運用。
在課堂的反映中,我深刻的感到這個這樣的教學(xué)內(nèi)容雖然脫離了課本,但是又和課本內(nèi)容緊密聯(lián)系非常受學(xué)生歡迎,主要表現(xiàn)在學(xué)生的注意力相當(dāng)集中,盡管沒有讓更多的同學(xué)表達(dá)他們的思路,但是讓同學(xué)們的思維都動了起來,當(dāng)有些同學(xué)有了自己的思路之后,都能大膽地發(fā)表自己的見解,或者在老師的啟示下能夠產(chǎn)生新的解題方法,但是我也發(fā)現(xiàn)對部分領(lǐng)悟能力較弱的孩子有一定的困難,需要老師把解題過程能夠全部的展現(xiàn)出來。
反思四:乘法公式教學(xué)反思
“蘇科版”數(shù)學(xué)教材在七年級下冊的的第九章《整式的乘法與因式分解》中安排了“乘法公式”這部分內(nèi)容。根據(jù)過往學(xué)生的認(rèn)識過程來看,學(xué)生的定向思維就認(rèn)為兩數(shù)的和的平方等于兩數(shù)的平方和,而且還是根深蒂固的,那么如何在教學(xué)中轉(zhuǎn)變或是加深學(xué)生對此公式的正確認(rèn)識呢?教材做了合理的安排,較好的方法是用“數(shù)形結(jié)合”,借助面積相等幫助代數(shù)恒等式的學(xué)習(xí)。
從人類思維活動規(guī)律的角度來考察,主體思維活動可以分成邏輯思維、形象思維和靈感思維,它們都是學(xué)習(xí)和研究數(shù)學(xué)的思維方式。其中形象思維是人腦憑借事物的形象進(jìn)行思維。所謂形象是指反映于人腦中的客體的映象。這種映象可以以物化的形式再現(xiàn)出來,并被人感知。
腦科學(xué)研究表明,邏輯思維主要發(fā)揮左腦半球的功能,形象思維則是發(fā)揮右腦半球的功能,如果適時進(jìn)行形象思維,充分發(fā)揮感觀的作用,就能使左右腦并用,提高大腦的整體功能,使抽象的研究對象具體化,具有空間觀,從而便于認(rèn)識隱蔽在事物深層的本質(zhì)和規(guī)律。這正是學(xué)習(xí)、研究數(shù)學(xué),提高數(shù)學(xué)能力的有效途徑和方法。
另外,從初中學(xué)生的思維特點來看,他們的'思維是從具體形象思維為主要形式逐步向抽象邏輯思維過渡,但這時的邏輯思維是思維是初步的,且在很大程度上仍具有具體形象性。因此,適時利用形象思維,既符合初中生的思維特點,也是進(jìn)一步培養(yǎng)他們數(shù)學(xué)能力的有效途徑。
在“蘇科版”《數(shù)學(xué)》教材中,每個章節(jié)的內(nèi)容較多的采用“學(xué)生做-在做中感受和體驗-主動獲取數(shù)學(xué)知識”的方式呈現(xiàn),在學(xué)生通過“做”獲得感受的基礎(chǔ)上,揭示具體實例的本質(zhì),然后再明晰有關(guān)知識。我認(rèn)為這里的在“做中感受和體驗”就是引導(dǎo)學(xué)生進(jìn)行形象思維的過程。
在推導(dǎo)整式的乘法公式時,我課堂教學(xué)中改變了過去應(yīng)用多項式乘以多項式的法則直接得到結(jié)論的做法,是通過計算圖形的面積的方法得到。從代數(shù)式的幾何意義出發(fā),激發(fā)學(xué)生的圖形觀,利用拼圖的方法,使學(xué)生在動手的試驗中發(fā)現(xiàn)、歸納公式,教學(xué)的效果較好。
乘法公式教學(xué)反思3
有人曾說“課堂教學(xué)總是一門帶著遺憾的藝術(shù)”,作為一名教師,我對此也頗有感慨。面對新的理念,新的結(jié)構(gòu),新的形式,新的體系,在課堂教學(xué)中,教師是否能最大限度地發(fā)揮主導(dǎo)作用,直接影響和制約著學(xué)生主體作用的發(fā)揮。以下我就談?wù)勗诒竟?jié)課中的幾點反思
一、設(shè)疑導(dǎo)思 探索公式
教師的主導(dǎo)作用首先體現(xiàn)在培養(yǎng)學(xué)生的學(xué)習(xí)興趣方面。因為教師是課堂心理環(huán)境的直接創(chuàng)造者,教師“導(dǎo)入”的情境、語言、方法直接影響學(xué)生的學(xué)習(xí)興趣及其探索知識的欲望。由于我校學(xué)生的基礎(chǔ)都不是很好,所以本課采用學(xué)生剛學(xué)過的“多項式乘法法則”來吸引學(xué)生的注意力,提高學(xué)生的學(xué)習(xí)興趣,從而使其端正學(xué)習(xí)態(tài)度全神貫注地投入到學(xué)習(xí)的整個過程中。
二、激活主題 理解公式
教師的主導(dǎo)作用還應(yīng)體現(xiàn)在積極進(jìn)行學(xué)法研究,加強學(xué)法指導(dǎo)。本節(jié)課中,先用圖形的面積來對公式作出直觀的理解,再用口訣來概括公式,使學(xué)生對公式的理解更加形象生動;最后通過例題讓學(xué)生按公式對號入座,進(jìn)一步理解公式中的a和b既可以表示數(shù)也可以表示字母,既可以表示單項式也可以表示多項式。采用由直觀到抽象,由抽象到形象,由形象到具體,層層遞進(jìn),由淺入深,深入淺出的辦法,使學(xué)生對完全平方公式有一個充分理解的過程。
三、組織交流 應(yīng)用公式
由于學(xué)生所處的文化環(huán)境、知識基礎(chǔ)和自身的思維方式不同,將導(dǎo)致不同的學(xué)習(xí)結(jié)果,即使是思維反映很靈敏的學(xué)生,在有些時刻也會遇到一些思維障礙。本節(jié)課在學(xué)生練習(xí)過程中,要仔細(xì)觀察學(xué)生探索活動的情緒表現(xiàn),從學(xué)生的言語、表情、眼神、手勢和體態(tài)等方面觀察他們的內(nèi)心活動,分析他們的思維狀態(tài)和概念水平,捕捉各種思維現(xiàn)象,隨時調(diào)整教學(xué)過程,讓學(xué)生自己去反思、糾錯,而教師則在關(guān)鍵時刻引導(dǎo)或者作出恰當(dāng)?shù)狞c撥。教師的主導(dǎo)作用還應(yīng)體現(xiàn)在及時發(fā)現(xiàn)學(xué)生思維發(fā)展中出現(xiàn)的錯誤后有針對地指導(dǎo)、引導(dǎo)學(xué)生進(jìn)行討論和探究。尤其是對(—2a—5)2的應(yīng)用可以看成〔(—2a)+(—5)〕2對應(yīng)(a+b)2,也可以看成〔(—2a)—5〕2對應(yīng)(a—b)2;更可以看成〔—(2a +5)〕2=(2a+5)2;而對于(a+b+c)2的.應(yīng)用,可以用多項式乘法法則(a+b+c)(a+b+c),也可以用完全平方公式,看成〔(a+b)+c〕2,也可以看成〔a+(b+c)〕2,不管是什么形式,最后結(jié)果是一樣的。這樣通過變式練習(xí),從而使學(xué)生多角度、全方面地對完全平方公式進(jìn)行充分認(rèn)識,完全平方公式中的a和b可以表示單項式也可以表示多項式,完全平方公式可以看成一個公式也可以看成兩個公式,增加學(xué)生對完全平方公式應(yīng)用的靈活性,要讓不同的學(xué)生得到不同的發(fā)展。
以上三點是掌握任何公式必備的條件,但是在掌握以上三點,我們要高瞻遠(yuǎn)矚,對課本中的教材必須要看的更深也更廣,所以我就在學(xué)生對乘法公式的基礎(chǔ)知識掌握的還不錯的基礎(chǔ)上,專門提出了今天的內(nèi)容,可以說是帶點專題性質(zhì)也可以說是課本知識的一種延續(xù),讓學(xué)生還要注意乘法公式的逆用,不僅要掌握乘法公式的正向應(yīng)用,還要注意掌握公式的逆向應(yīng)用,乘法公式均可逆用,特別是完全平方公式的逆用就是配方,配方是一種很重要的數(shù)學(xué)思想方法,它的應(yīng)用非常廣泛。還要注意乘法公式的變形,要善于對公式變形的應(yīng)用,在解題中充分體現(xiàn)應(yīng)用公式的思維靈活性和廣泛性。同學(xué)們在運用公式時,不應(yīng)拘泥于公式的形式而要深刻理解、靈活運用。
乘法公式教學(xué)反思4
根據(jù)課程改革的要求,初中數(shù)學(xué)教學(xué)中通過課題學(xué)習(xí),學(xué)生將經(jīng)歷探索、討論、交流、應(yīng)用數(shù)學(xué)知識解釋有關(guān)問題的過程,從中體會數(shù)學(xué)的應(yīng)用價值,發(fā)展自己數(shù)學(xué)思維能力,獲得一些研究問題、解決問題的經(jīng)驗和方法,從而培養(yǎng)學(xué)生探究數(shù)學(xué)學(xué)習(xí)的興趣,體驗學(xué)習(xí)的成功。
在北師大版八年級的數(shù)學(xué)(上)《整式》中,我們遇到了《平方差與完全平方公式》的教學(xué)任務(wù)。根據(jù)過往學(xué)生的認(rèn)識過程來看,學(xué)生的定向思維就認(rèn)為(a+b)2=a2+b2,而且還是根深蒂固的,那么如何在教學(xué)中轉(zhuǎn)變或是加深學(xué)生對此公式的正確認(rèn)識呢? 在課前,我想了很多方法,也參考一些兄弟學(xué)校的做法,我嘗試用兩種教學(xué)方法做個試驗,看學(xué)生的接受情況如何。
方法一:數(shù)形結(jié)合——面積與代數(shù)恒等式的學(xué)習(xí)
從代數(shù)式的.幾何意義出發(fā),激發(fā)學(xué)生的圖形觀,利用拼圖的方法,使學(xué)生在動手的試驗中發(fā)現(xiàn)、歸納公式。本課中,本想讓學(xué)生課前先做好紙片,然后再堂上小組合作,探究公式。()但是按學(xué)生的學(xué)習(xí)習(xí)慣來看,這課前的要求怕難落實,因而我改用了課件,用學(xué)生看屏幕觀察和小組合作完成學(xué)卷的方式完成教學(xué)。
教學(xué)環(huán)節(jié):(學(xué)生觀察、小組合作歸納) 問題1:首先請你仔細(xì)觀察下圖,你能用下面的圖解釋兩數(shù) 和乘以它們的差公式嗎?
問題2:請你組員一起合作,仿照問題1的方法,
表示(a+b)2與(a-b)2的幾何圖形。
就這兩個問題,學(xué)生用了一節(jié)課完成。中間的學(xué)生活動,老師還是講的比較多,因此答案也比較一律了,當(dāng)然這與學(xué)生的學(xué)習(xí)能力有關(guān)。不過,學(xué)生總算明白兩公式的幾何意義了,這也算是本節(jié)課最大的收獲了。但學(xué)生對公式的理解還是“半熟”。
方法二:數(shù)值驗算——利用數(shù)值計算歸納公式
此方法可以說比較老套,但是對學(xué)生來說,可能容易接受。我的設(shè)計是這樣的:
請把五組數(shù) 的值分別輸入下圖的兩個數(shù)值轉(zhuǎn)換機,比較兩個輸出結(jié)果,你發(fā)現(xiàn)什么?這說明了什么?7的乘法口訣教學(xué)反思小數(shù)乘法教學(xué)反思9的乘法口訣教學(xué)設(shè)計
乘法公式教學(xué)反思5
本學(xué)期學(xué)習(xí)了乘法運算定律。乘法運算定律包括乘法交換律、乘法結(jié)合律。
學(xué)生對于加法交換律和乘法的交換律掌握較好,然而對于乘法結(jié)合律則運用得不太理想。
反思造成的原因及解決辦法如下:
第一,學(xué)生現(xiàn)在只是能夠初步認(rèn)識,還不明白這幾個運算定律的作用和意義。
第二,學(xué)生不能正確的分析算式并正確的運用運算定律,如遇到25× 16就不知道如何計算,有時會把16分成10×6,有時會寫成25×10+6,針對上述情況還需對學(xué)生加強算理、算法的理解,更要在學(xué)生的腦海中滲透“湊整”的思想。
第三,對于有些算式,有的學(xué)生甚至運用運算定律折騰了一番又回到了原來的算式,不會靈活處理。
綜上所述,學(xué)生并沒有深刻體會到運算定律帶來的'方便,解決辦法可以是多講多練,多做一些對比性強(能簡便與不簡便的混合運算)的題目,不斷的培養(yǎng)學(xué)生的數(shù)感,在不斷的重復(fù)練習(xí)過程中,體會應(yīng)該如何運用運算定律,(以能湊成整十、整百的優(yōu)先組合為原則)也就是如何做題。等接觸的題目類型多了,我想學(xué)生會感悟到原來在計算的過程中運用運算定律可以使運算過程變得簡單,這樣,學(xué)生在計算的時候,自然就會去運用了,而且會十分的感興趣
乘法公式教學(xué)反思6
通過“數(shù)值轉(zhuǎn)換機”的練習(xí),讓學(xué)生在計算中驗證“完全平方公式”。學(xué)生在這堂上快速地做完這些問題,并在老師的引導(dǎo)下,歸納出完全平方公式,并完成了相關(guān)的基礎(chǔ)練習(xí)。本節(jié)課的任務(wù)順利完成。
兩節(jié)課后,心里很虛。第一個教學(xué)班,側(cè)重于面積與代數(shù)恒等式的關(guān)系驗證,但學(xué)生的基礎(chǔ)練習(xí)不夠,尤其是學(xué)困生較多的班級,他們對公式的熟練還是要靠大量的習(xí)題才能鞏固,所以下一課時,還花了不少功夫重新詳解計算。第二個教學(xué)班,強調(diào)了數(shù)值的計算,掌握了公式的計算技巧,但學(xué)生少了邏輯思維的'推敲,此課他們成了“數(shù)值計算器”了,他們與第一個教學(xué)班的公式認(rèn)識深度肯定不同,當(dāng)回頭給他們補充面積的表示,他們直嚷聽不懂,但他們解題的能力又比第一教學(xué)班稍勝一點。矛盾!到底是要“素質(zhì)”還是要“分?jǐn)?shù)”啊!尤其是我們學(xué)校的學(xué)生們。
不過第一種的方法在后面的教學(xué)嘗到了一些甜頭。在勾股定理的公式推導(dǎo)中,第一個教學(xué)班的學(xué)生很容易就接受了,并且對不同的圖形推導(dǎo)方式,他們都以極大的興趣投入了計算、推導(dǎo)。這是讓我最想不到的。
通過這次的課堂試驗比較,給我最大的感受是,我們要相信學(xué)生的能力,即便他們不強,但是通過適當(dāng)?shù)囊龑?dǎo),多樣化的手段,他們還是能達(dá)到我們的目標(biāo)。對于學(xué)困生的教學(xué),我們不光著眼于基礎(chǔ)與技能的訓(xùn)練,還可以給他們一點拓展的機會,有時會給我們帶來驚喜。
乘法公式教學(xué)反思7
數(shù)學(xué)課程標(biāo)準(zhǔn)中關(guān)于公式的教學(xué)目標(biāo)是:會推導(dǎo)公式(a+b)(a-b)=a2-b2,了解公式的幾何背景,并能簡單計算。教材在安排兩數(shù)和乘以兩數(shù)差公式時,先根據(jù)多項式乘法法則對公式進(jìn)行推導(dǎo),再通過求一個幾何圖形的面積引出公式,最后安排兩道例題。
教學(xué)中,我基本按教材順序進(jìn)行教學(xué),大多數(shù)同學(xué)也都掌握了公式的特點,會有公式進(jìn)行計算,但從學(xué)生作業(yè)反饋的情況來看,效果并不好。事后通過個別輔導(dǎo)等,方才使學(xué)生會用平方差公式進(jìn)行計算。
反思這節(jié)課的教學(xué),我覺得有以下三個環(huán)節(jié)未處理好:
一是直接引出圖形,未能注重情景的創(chuàng)設(shè)。如果先出示一組計算題:如:(a+b)(a-b),(a+3b)(a-3b),(0.5x-3y)(0.5x+3y),限定時間讓學(xué)生用多項式乘法法則進(jìn)行計算,然后啟發(fā)學(xué)生觀察這組計算題的特點,引導(dǎo)學(xué)生自己發(fā)現(xiàn)平方差公式,再通過拼圖驗證公式的正確性。那么,學(xué)生就能明白我們?yōu)槭裁匆獙W(xué)習(xí)了平方差公式。從激發(fā)學(xué)生的學(xué)習(xí)興趣考慮,此舉效果可能更好。
二是在公式得出后,我急于代替學(xué)生說出公式的結(jié)構(gòu)特點,而不是讓學(xué)生自己獨立說出,此舉不利于加深學(xué)生對公式結(jié)構(gòu)的掌握,在后來的學(xué)習(xí)中也就難以靈活運用。同時也不利于培養(yǎng)學(xué)生的`口頭表達(dá)能力。
三是例題的選取缺乏遇見性。雖然學(xué)生會用平方差公式求(a+b)(a-b),(a+3b)(a-3b),(0.5x-3y)(0.5x+3y),但對于一些變式題,學(xué)生則感到難以下手,比如(b+a)(-b+a),(3b+a)(a-3b),(-0.5x-3y)(0.5x+3y),(a+b-c)(a-b+c),(0.5x-3y)2(0.5x+3y)2等。如果在進(jìn)行例題教學(xué)時,我除了能注重發(fā)揮傳統(tǒng)教學(xué)的長處,還能適當(dāng)進(jìn)行一題多變的訓(xùn)練,那么學(xué)生遇到上述習(xí)題,或許會不覺得那么難了。
乘法公式教學(xué)反思8
乘法公式是《整式的乘除》一章的重要內(nèi)容,也是今后學(xué)習(xí)數(shù)學(xué)的重要工具,要學(xué)好這部分,除了要注意:
1、掌握公式的幾何意義比如完全平方公式。
2、注意掌握公式的結(jié)構(gòu)特點,掌握公式的結(jié)構(gòu)特點是正確使用公式的前提。如平方差公式的結(jié)構(gòu)特點是:公式的左邊是這兩個二項式的積,且這兩個二項式有一項完全相同,另一項互為相反數(shù),公式的右邊是這兩項的平方差,且是左邊的相同的一項的平方減去互為相反數(shù)的一項的平方。掌握了這些特點,就能在各種情況下正確運用平方差公式進(jìn)行計算了。
3、注意公式中字母的廣泛意義,乘法公式中的字母既可以代表任意的數(shù),又可以代表代數(shù)式,只有注意到字母所表示的意義的廣泛性,就能擴大乘法公式的應(yīng)用范圍。
對課本中的教材必須要看的更深也更廣,所以我就在學(xué)生對乘法公式的基礎(chǔ)知識掌握的還不錯的基礎(chǔ)上專門提出了今天的內(nèi)容,可以說是帶點專題性質(zhì)也可以說是課本知識的一種延續(xù),讓學(xué)生還要注意乘法公式的逆用,不僅要掌握乘法公式的正向應(yīng)用,還要注意掌握公式的逆向應(yīng)用,乘法公式均可逆用,特別是完全平方公式的逆用就是配方,配方是一種很重要的數(shù)學(xué)思想方法,它的應(yīng)用非常廣泛。還要注意乘法公式的變形,要善于對公式變形的應(yīng)用,在解題中充分體現(xiàn)應(yīng)用公式的'思維靈活性和廣泛性。同學(xué)們在運用公式時,不應(yīng)拘泥于公式的形式而要深刻理解、靈活運用。在課堂的反映中,我深刻的感到這個這樣的教學(xué)內(nèi)容雖然脫離了課本,但是又和課本內(nèi)容緊密聯(lián)系非常受學(xué)生歡迎,主要表現(xiàn)在學(xué)生的注意力相當(dāng)集中,盡管沒有讓更多的同學(xué)表達(dá)他們的思路,但是讓同學(xué)們的思維都動了起來,當(dāng)有些同學(xué)有了自己的思路之后,都能大膽地發(fā)表自己的見解,或者在老師的啟示下能夠產(chǎn)生新的解題方法,但是我也發(fā)現(xiàn)對部分領(lǐng)悟能力較弱的孩子有一定的困難,需要老師把解題過程能夠全部的展現(xiàn)出來。
乘法公式教學(xué)反思9
新課標(biāo)要求我們在教學(xué)中不只是傳授學(xué)生基本的知識技能,還要以培養(yǎng)學(xué)生的數(shù)學(xué)能力及合作探究的意識為目標(biāo)。為此,我在設(shè)計本節(jié)課的教學(xué)環(huán)節(jié)時充分考慮學(xué)生的認(rèn)知規(guī)律,并以培養(yǎng)學(xué)生的數(shù)學(xué)素質(zhì),了解運用數(shù)學(xué)思想方法,增強學(xué)生的合作探究意識為宗旨。
我的'教學(xué)流程是按照“引入——猜想——證明——辨析——應(yīng)用——歸納——檢測”的順序進(jìn)行的,非常符合學(xué)生的認(rèn)知規(guī)律。我覺得本節(jié)課比較好的方面有以下幾點:1.在利用圖形面積證明平方差公式時,我沒有采用教材上直接給出剪接方法再證明的過程,只給出了原圖讓學(xué)生們自己去探究不同的方法。事實證明,學(xué)生們不只拼出了書上的方法,還從對角線剪開拼出了梯形,平行四邊形和長方形三種方法,思維一下就開闊了。這里我并沒有為了證明而證明,也沒有怕浪費時間匆匆而過,而是給學(xué)生留下了充足的思考和討論時間,真正激發(fā)了學(xué)生的思維。2.通過設(shè)置一個“找朋友”的小游戲來辨析公式,調(diào)動了學(xué)生的積極性,活躍了課堂氣氛,因此,游戲過后學(xué)生對公式的結(jié)構(gòu)特征也有了更深刻的了解。
當(dāng)然,本節(jié)課也有一些遺憾和不足之處。比如,由于緊張,在授課過程中遺漏了兩點,通過播放幻燈片才慌忙補充上;在處理學(xué)生練習(xí)時,為了抓緊時間完成進(jìn)度沒有把學(xué)生的出錯點講透講細(xì);游戲環(huán)節(jié)參與學(xué)生有些少,應(yīng)讓更多的同學(xué)動起來;當(dāng)堂檢測的題目應(yīng)該設(shè)置上分值和檢測時間,讓學(xué)生限時完成,然后可以根據(jù)學(xué)生得分了解本節(jié)課的學(xué)習(xí)效果,以便下節(jié)課再有針對性的進(jìn)行講解和練習(xí)查漏補缺。
乘法公式教學(xué)反思10
有人曾說“課堂教學(xué)總是一門帶著遺憾的藝術(shù)”,作為一名教師,我對此也頗有感慨。面對新的理念,新的結(jié)構(gòu),新的形式,新的體系,在課堂教學(xué)中,教師是否能最大限度地發(fā)揮主導(dǎo)作用,直接影響和制約著學(xué)生主體作用的發(fā)揮。以下我就談?wù)勗诒竟?jié)課中教師的主導(dǎo)作用。
一、設(shè)疑導(dǎo)思探索公式--------引導(dǎo)者
教師的主導(dǎo)作用首先體現(xiàn)在培養(yǎng)學(xué)生的學(xué)習(xí)興趣方面。因為教師是課堂心理環(huán)境的直接創(chuàng)造者,教師“導(dǎo)入”的情境、語言、方法直接影響學(xué)生的學(xué)習(xí)興趣及其探索知識的欲望。由于我校學(xué)生的基礎(chǔ)都不是很好,所以本課采用學(xué)生剛學(xué)過的`“多項式乘法法則”來吸引學(xué)生的注意力,提高學(xué)生的學(xué)習(xí)興趣,從而使其端正學(xué)習(xí)態(tài)度全神貫注地投入到學(xué)習(xí)的整個過程中。
二、激活主題理解公式--------促進(jìn)者
教師的主導(dǎo)作用還應(yīng)體現(xiàn)在積極進(jìn)行學(xué)法研究,加強學(xué)法指導(dǎo)。本節(jié)課中,先用圖形的面積來對公式作出直觀的理解,再用口訣來概括公式,使學(xué)生對公式的理解更加形象生動;最后通過例題讓學(xué)生按公式對號入座,進(jìn)一步理解公式中的a和b既可以表示數(shù)也可以表示字母,既可以表示單項式也可以表示多項式。采用由直觀到抽象,由抽象到形象,由形象到具體,層層遞進(jìn),由淺入深,深入淺出的辦法,使學(xué)生對完全平方公式有一個充分理解的過程。
三、組織交流應(yīng)用公式--------調(diào)控者
由于學(xué)生所處的文化環(huán)境、知識基礎(chǔ)和自身的思維方式不同,將導(dǎo)致不同的學(xué)習(xí)結(jié)果,即使是思維反映很靈敏的學(xué)生,在有些時刻也會遇到一些思維障礙。本節(jié)課在學(xué)生練習(xí)過程中,要仔細(xì)觀察學(xué)生探索活動的情緒表現(xiàn),從學(xué)生的言語、表情、眼神、手勢和體態(tài)等方面觀察他們的內(nèi)心活動,分析他們的思維狀態(tài)和概念水平,捕捉各種思維現(xiàn)象,隨時調(diào)整教學(xué)過程,讓學(xué)生自己去反思、糾錯,而教師則在關(guān)鍵時刻引導(dǎo)或者作出恰當(dāng)?shù)狞c撥。教師的主導(dǎo)作用還應(yīng)體現(xiàn)在及時發(fā)現(xiàn)學(xué)生思維發(fā)展中出現(xiàn)的錯誤后有針對地指導(dǎo)、引導(dǎo)學(xué)生進(jìn)行討論和探究。尤其是對(—2a—5)2的應(yīng)用可以看成〔(—2a)+(—5)〕2對應(yīng)(a+b)2,也可以看成〔(—2a)—5〕2對應(yīng)(a—b)2;更可以看成〔—(2a+5)〕2=(2a+5)2;而對于(a+b+c)2的應(yīng)用,可以用多項式乘法法則(a+b+c)(a+b+c),也可以用完全平方公式,看成〔(a+b)+c〕2,也可以看成〔a+(b+c)〕2,不管是什么形式,最后結(jié)果是一樣的。這樣通過變式練習(xí),從而使學(xué)生多角度、全方面地對完全平方公式進(jìn)行充分認(rèn)識,完全平方公式中的a和b可以表示單項式也可以表示多項式,完全平方公式可以看成一個公式也可以看成兩個公式,增加學(xué)生對完全平方公式應(yīng)用的靈活性,要讓不同的學(xué)生得到不同的發(fā)展。
四、明晰結(jié)論深化公式--------提高者
教師主導(dǎo)作用應(yīng)是畫龍點睛作用。觀察思考、表達(dá)是伴隨探究過程不可或缺的因素。本節(jié)課中,通過糾錯練習(xí),對四道題的正確答案進(jìn)行比較分析得出總結(jié):如果a、b的符號相同,乘積的2倍的符號用“+”;如果a、b的符號相反,乘積的2倍的符號用“—”。使學(xué)生對公式的認(rèn)識從感性認(rèn)識上升到理性認(rèn)識,思維從復(fù)合階段前進(jìn)到明晰階段。通過對公式的缺項選擇填空練習(xí),使學(xué)生對完全平方公式的認(rèn)識進(jìn)一步升華。
乘法公式教學(xué)反思11
上節(jié)課學(xué)習(xí)過乘法公式中的“完全平方公式”之后,本節(jié)課繼續(xù)研究另一個公式“平方差公式”。在備課之初,就和初一的同事商定了教學(xué)計劃,一直認(rèn)為“平方差公式”掌握的如何,關(guān)鍵在于學(xué)生對于算式中“相等項和符號相反項”的理解,這也是本節(jié)課的難點。
課堂教學(xué)“情境創(chuàng)設(shè)”“活動探索”環(huán)節(jié)分析反思:
一、情境創(chuàng)設(shè)
我注重了公式的引入教學(xué)過程,首先借用生活實例“周寧(班上生活委員)到商店買了 10.2 元 / 千克的糖果 9.8 千克,并一口報出了總價錢 99.96 元,問同學(xué)們,周寧用了什么公式”引入新課的問題,并讓學(xué)生體會到“數(shù)學(xué)與生活”的密切聯(lián)系,也有助于“情感態(tài)度與價值觀”這一教學(xué)目標(biāo)的落實。
二、活動探索
活動的參與不僅能加深對新知的理解,更重要的是在這一過程中,學(xué)生獲得了更多的數(shù)學(xué)經(jīng)驗,思維得到了訓(xùn)練,這是三維目標(biāo)當(dāng)中的`“過程與方法”,很有價值,是檢驗數(shù)學(xué)教學(xué)成效大小的重要指標(biāo)。
活動內(nèi)容是將邊長為 b 的小正方形覆蓋到邊長為 a 的大正方形上,計算未覆蓋面積的大小。在研讀教材及教參是,推薦的方法是轉(zhuǎn)變成兩個面積相等的梯形。這種方法容易計算,但是學(xué)生不易想到。所以考慮到另一種方法,即“割補法”。設(shè)計時,就是準(zhǔn)備根據(jù)學(xué)生的任意選擇進(jìn)行接下來的探索。在課堂教學(xué)中,引導(dǎo)學(xué)生觀察小正方形無論放在大正方形的什么位置,未覆蓋面積大小不變,師問:“你覺得,把小正方形放在什么位置,容易進(jìn)行計算”,學(xué)生受到啟發(fā)很快想到了,將小正方形發(fā)在一個角落。接下來另一個學(xué)生想到了分成兩個長方形,在此基礎(chǔ)上,教師和學(xué)生共同用“割補法”完成了活動的探索,得到了平方差公式“ (a+b)*(a-b)=a2-b2 ” .
反思這一教學(xué)環(huán)節(jié),有兩點做的不足,一是學(xué)生參與不足,二是教師急于求成。學(xué)生參與不足是因為整個活動的操作環(huán)節(jié)都是教師完成的,學(xué)生沒有切身的體會,進(jìn)而導(dǎo)致學(xué)生探索的效果不理想,當(dāng)我看到學(xué)生說不出來時,急于求成,就替學(xué)生完成了有難度的活動。而難度都讓教師解決了,學(xué)生的鍛煉機會就沒有了。設(shè)計探索活動的意義就沒有了。
解決這兩點不足,我覺得首先在備課之初,就要考慮選擇的探索活動對于學(xué)生而言,難度是否適中,如果太難了,必然影響教學(xué)效果。另一個就是課前準(zhǔn)備充分,如果教師能夠組織學(xué)生準(zhǔn)備一些教具,這樣學(xué)生就能參與進(jìn)來,有了更加直接的感性認(rèn)識,探索活動的效果必然會好些,教學(xué)目標(biāo)“過程與方法”才能有效的落實。
乘法公式教學(xué)反思12
根據(jù)課程改革的要求,初中數(shù)學(xué)教學(xué)中通過課題學(xué)習(xí),學(xué)生將經(jīng)歷探索、討論、交流、應(yīng)用數(shù)學(xué)知識解釋有關(guān)問題的過程,從中體會數(shù)學(xué)的應(yīng)用價值,發(fā)展自己數(shù)學(xué)思維能力,獲得一些研究問題、解決問題的經(jīng)驗和方法,從而培養(yǎng)學(xué)生探究數(shù)學(xué)學(xué)習(xí)的興趣,體驗學(xué)習(xí)的成功。
在八年級的數(shù)學(xué)(上)中的《整式的`乘除》中,我們遇到了《平方差與完全平方公式》的教學(xué)任務(wù)。根據(jù)過往學(xué)生的認(rèn)識過程來看,學(xué)生的定向思維就認(rèn)為(a+b)2=a2+b2,而且還是根深蒂固的,那么如何在教學(xué)中轉(zhuǎn)變或是加深學(xué)生對此公式的正確認(rèn)識呢?在課前,我想了很多方法,也參考一些兄弟學(xué)校的做法,我嘗試用兩種教學(xué)方法做個試驗,看學(xué)生的接受情況如何。
方法一:數(shù)形結(jié)合――面積與代數(shù)恒等式的學(xué)習(xí)
從代數(shù)式的幾何意義出發(fā),激發(fā)學(xué)生的圖形觀,利用拼圖的方法,使學(xué)生在動手的試驗中發(fā)現(xiàn)、歸納公式。本課中,本想讓學(xué)生課前先做好紙片,然后再堂上小組合作,探究公式。但是按學(xué)生的學(xué)習(xí)習(xí)慣來看,這課前的要求怕難落實,因而我改用了課件,用學(xué)生看屏幕觀察和小組合作完成學(xué)卷的方式完成教學(xué)。
教學(xué)環(huán)節(jié):(學(xué)生觀察、小組合作歸納)
問題1:首先請你仔細(xì)觀察下圖,你能用下面的圖解釋兩數(shù)和乘以它們的差公式嗎?
問題2:請你組員一起合作,仿照問題1的方法,表示(a+b)2與(a—b)2的幾何圖形。
就這兩個問題,學(xué)生用了一節(jié)課完成。中間的學(xué)生活動,老師還是講的比較多,因此答案也比較一律了,當(dāng)然這與學(xué)生的學(xué)習(xí)能力有關(guān)。不過,學(xué)生總算明白兩公式的幾何意義了,這也算是本節(jié)課最大的收獲了。但學(xué)生對公式的理解還是“半熟”。
方法二:數(shù)值驗算――利用數(shù)值計算歸納公式
此方法可以說比較老套,但是對學(xué)生來說,可能容易接受。我的設(shè)計是這樣的:
請把五組數(shù)的值分別輸入下圖的兩個數(shù)值轉(zhuǎn)換機,比較兩個輸出結(jié)果,你發(fā)現(xiàn)什么?這說明了什么?
乘法公式教學(xué)反思13
本節(jié)內(nèi)容是在前一節(jié)二次根式的學(xué)習(xí)基礎(chǔ)上,學(xué)習(xí)積的算術(shù)平方根的性質(zhì),同時為商的算術(shù)平方根的性質(zhì)作準(zhǔn)備。所以在教學(xué)中更注重讓學(xué)生通過具體實例對比、歸納得到積的二次根式的性質(zhì)。在此,過程中給予適當(dāng)?shù)闹笇?dǎo),提出問題讓學(xué)生有一定的探索方向。這一部分教學(xué)我主要是從以下幾點進(jìn)行的:
1.注意了對二次根式概念、性質(zhì)的'復(fù)習(xí),從而引入了二次根式的乘法法則,得到了二次根式乘法的計算方法和計算公式。公式就是工具,工具順手了工作就快就有效率。因此,在這里讓學(xué)生進(jìn)行了大量的練習(xí),熟練公式,打好基礎(chǔ)。
2.注意了二次根式乘法的計算公式的逆用?偨Y(jié)了乘法公式的逆用就是用來使“被開方數(shù)中不含能開的盡方的因數(shù)或因式”,從而保證了結(jié)果是最簡二次根式。注重方法的傳授。
3.教學(xué)中強調(diào)了前面學(xué)過的運算法則和運算律對二次根式同樣適用,反映了數(shù)學(xué)理論的一貫性,使學(xué)生在學(xué)習(xí)中感到所學(xué)并不難。在教學(xué)中,充分利用教材內(nèi)容,結(jié)合實際問題提高學(xué)生的學(xué)習(xí)積極性。
4.教學(xué)中不僅要抓整體,更要注意一些重要細(xì)節(jié)。在學(xué)生做題過程中讓學(xué)生用心總結(jié)一些簡單值和特殊值的乘法和化簡的方法。教材中淡化計算過程,這里也透露出教材的一個特點:很重視學(xué)生思維上的培養(yǎng),卻忽視了基本計算能力的訓(xùn)練,似乎認(rèn)為每個學(xué)生都能達(dá)到一學(xué)就會的理想境界;A(chǔ)好和反應(yīng)快的學(xué)生沒有問題,但并不是都是這樣,教師就要讓學(xué)生了解計算過程每一步的由來。
乘法公式教學(xué)反思14
本課的學(xué)習(xí)目的主要是熟練掌握整式的運算,并且這些知識是以后學(xué)習(xí)分式、根式運算以及函數(shù)等知識的基礎(chǔ),同時也是學(xué)習(xí)物理、化學(xué)等學(xué)科及其他科學(xué)技術(shù)不可或缺的數(shù)學(xué)工具。而本節(jié)是整式乘法中乘法公式的首要內(nèi)容,學(xué)生只有熟練掌握了包括平方差公式在內(nèi)的乘法公式及它的推導(dǎo)過程,才能實現(xiàn)本節(jié)乃至本章作為數(shù)學(xué)工具的重要作用。因此,在教學(xué)安排上,我選擇從學(xué)生熟悉的求多邊形面積入手,遵循從感性認(rèn)識上升為理性思維的認(rèn)知規(guī)律,得出抽象的概念,并在多項式乘法的基礎(chǔ)上,再次推導(dǎo)公式,使原本枯燥的數(shù)學(xué)概念具有一定的實際意義和說理性;之后安排了一系列的例題和練習(xí)題,把新知運用到實戰(zhàn)中去,解決簡單的實際問題,這樣既調(diào)動了學(xué)生學(xué)習(xí)的主動性,又鍛煉了思維,整個過程由淺入深,在對所得結(jié)論不斷觀察、討論、分析中,加深對概念的理解,增強學(xué)生應(yīng)用知識解決問題的能力,從而達(dá)到較好的授課效果。
數(shù)學(xué)是一門抽象的學(xué)科,但數(shù)學(xué)是來源于實際生活的.。因此,數(shù)學(xué)教育的目的是將數(shù)學(xué)運用到實際生活中去,讓學(xué)生深切感受到數(shù)學(xué)是有價值的科學(xué),來源于生活,是其他科學(xué)的基礎(chǔ)。本節(jié)公式中字母的含義對學(xué)生來講很抽象,是本節(jié)的難點,也是學(xué)生運用公式解決實際問題的最大障礙,通過鞏固練習(xí),讓學(xué)生逐步體會,為今后學(xué)習(xí)其他乘法公式做好準(zhǔn)備。乘法公式的逆用就是因式分解的重要方法,因此,在本節(jié)補充練習(xí)中,已經(jīng)開始滲透這部分知識,為后面學(xué)習(xí)因式分解做好鋪墊。
但是,我在教本章內(nèi)容時卻始終感到困惑。本以為這一章很簡單,由于教材安排存在一定問題,如將同底數(shù)冪乘法、冪的乘方、積的乘方、單項式乘以單項式、單項式乘以多項式、多項式乘以多項式這么多的內(nèi)容安排在一起,造成學(xué)生沒掌握好、消化好,知識間相互混淆,設(shè)置了障礙。所以很多學(xué)生出現(xiàn)下列錯誤(3x?2)(3x?2)?3x象我們想象中掌握的那么好。
本章教材編者在此安排不太合理,沒有考慮到學(xué)生的認(rèn)知規(guī)律,不利于學(xué)生很好掌握,所以,我感覺以后上這章的時候不能按照教材課時安排走。否則還會出現(xiàn)今天的問題。
乘法公式教學(xué)反思15
乘法公式是《整式的乘除》一章的重要內(nèi)容,也是今后學(xué)習(xí)數(shù)學(xué)的重要工具,要學(xué)好這部分,除了要注意:
1、掌握公式的幾何意義比如完全平方公式。
2、注意掌握公式的結(jié)構(gòu)特點,掌握公式的結(jié)構(gòu)特點是正確使用公式的前提。如平方差公式的結(jié)構(gòu)特點是:公式的左邊是這兩個二項式的積,且這兩個二項式有一項完全相同,另一項互為相反數(shù),公式的右邊是這兩項的平方差,且是左邊的相同的一項的平方減去互為相反數(shù)的一項的平方。掌握了這些特點,就能在各種情況下正確運用平方差公式進(jìn)行計算了。
3、 注意公式中字母的廣泛意義,乘法公式中的字母既可以代表任意的數(shù),又可以代表代數(shù)式,只有注意到字母所表示的意義的廣泛性,就能擴大乘法公式的應(yīng)用范圍。
對課本中的教材必須要看的更深也更廣,所以我就在學(xué)生對乘法公式的基礎(chǔ)知識掌握的還不錯的基礎(chǔ)上專門提出了今天的內(nèi)容,可以說是帶點專題性質(zhì)也可以說是課本知識的一種延續(xù),讓學(xué)生還要注意乘法公式的逆用,不僅要掌握乘法公式的正向應(yīng)用,還要注意掌握公式的逆向應(yīng)用,乘法公式均可逆用,特別是完全平方公式的逆用就是配方,配方是一種很重要的數(shù)學(xué)思想方法,它的應(yīng)用非常廣泛。還要注意乘法公式的.變形,要善于對公式變形的應(yīng)用,在解題中充分體現(xiàn)應(yīng)用公式的思維靈活性和廣泛性。同學(xué)們在運用公式時,不應(yīng)拘泥于公式的形式而要深刻理解、靈活運用。在課堂的反映中,我深刻的感到這個這樣的教學(xué)內(nèi)容雖然脫離了課本,但是又和課本內(nèi)容緊密聯(lián)系非常受學(xué)生歡迎,主要表現(xiàn)在學(xué)生的注意力相當(dāng)集中,盡管沒有讓更多的同學(xué)表達(dá)他們的思路,但是讓同學(xué)們的思維都動了起來,當(dāng)有些同學(xué)有了自己的思路之后,都能大膽地發(fā)表自己的見解,或者在老師的啟示下能夠產(chǎn)生新的解題方法,但是我也發(fā)現(xiàn)對部分領(lǐng)悟能力較弱的孩子有一定的困難,需要老師把解題過程能夠全部的展現(xiàn)出來。
【乘法公式教學(xué)反思】相關(guān)文章:
《乘法公式》教學(xué)反思04-02
乘法公式的教學(xué)反思02-14
八年級數(shù)學(xué)乘法公式教學(xué)反思03-05
誘導(dǎo)公式教學(xué)反思05-02
《筆算乘法》教學(xué)反思04-29
《整式的乘法》教學(xué)反思03-27
《口算乘法》教學(xué)反思03-28
筆算乘法教學(xué)反思07-07