三角形內(nèi)角和教案[精華15篇]
作為一名優(yōu)秀的教育工作者,總歸要編寫(xiě)教案,教案是備課向課堂教學(xué)轉(zhuǎn)化的關(guān)節(jié)點(diǎn)。那么寫(xiě)教案需要注意哪些問(wèn)題呢?以下是小編整理的三角形內(nèi)角和教案,供大家參考借鑒,希望可以幫助到有需要的朋友。
三角形內(nèi)角和教案1
設(shè)計(jì)理念:
本教學(xué)活動(dòng)通過(guò)創(chuàng)設(shè)情境,讓學(xué)生從情境中出發(fā)經(jīng)歷猜測(cè)、驗(yàn)證、交流等數(shù)學(xué)活動(dòng),培養(yǎng)學(xué)生動(dòng)手實(shí)踐、自主探究與合作交流的能力。同時(shí),讓學(xué)生充分感受到:數(shù)學(xué)源于生活,生活離不開(kāi)數(shù)學(xué),數(shù)學(xué)就在我們身邊。遵循由特殊到一般的規(guī)律進(jìn)行探究活動(dòng)是這節(jié)課設(shè)計(jì)的主要特點(diǎn)之一,并在這一系列教學(xué)活動(dòng)中潛移默化地向?qū)W生滲透了“轉(zhuǎn)化”數(shù)學(xué)思想,為后續(xù)學(xué)習(xí)奠定必要的基礎(chǔ)。
教學(xué)內(nèi)容:
《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)·數(shù)學(xué)》(人教版)四年級(jí)下冊(cè)第85頁(yè)例5及相應(yīng)練習(xí)。
學(xué)情與教材分析:
該內(nèi)容是本冊(cè)教材第五單元關(guān)于三角形內(nèi)角和的教學(xué)。它安排在三角形的分類(lèi)之后,組織學(xué)生對(duì)不同形狀和不同大小三角形度量?jī)?nèi)角的度數(shù)。通過(guò)度量,各種三角形內(nèi)角和之和都接近180°,引發(fā)學(xué)生對(duì)三角形內(nèi)角和探究的欲望,應(yīng)用折疊、拼湊等方法驗(yàn)證。教材重視知識(shí)的探索與發(fā)現(xiàn),安排了一系列的實(shí)驗(yàn)操作活動(dòng)。教材呈現(xiàn)教學(xué)內(nèi)容時(shí),不但重視體現(xiàn)知識(shí)的形成過(guò)程,而且注意留給學(xué)生進(jìn)行自主探索和交流的空間,讓學(xué)生探索、實(shí)驗(yàn)、發(fā)現(xiàn)、討論交流、推理歸納出三角形的內(nèi)角和是180°。
教學(xué)目標(biāo):
1、通過(guò)量、剪、拼等方法,探索和發(fā)現(xiàn)三角形內(nèi)角和是180°。
2、在操作活動(dòng)中,培養(yǎng)學(xué)生的合作能力、動(dòng)手操作能力,發(fā)展學(xué)生的空間觀(guān)念,并應(yīng)用新知識(shí)解決問(wèn)題。
3、使學(xué)生有科學(xué)實(shí)驗(yàn)態(tài)度,激發(fā)學(xué)生主動(dòng)學(xué)習(xí)數(shù)學(xué)的興趣,體驗(yàn)數(shù)學(xué)學(xué)習(xí)成功的喜悅。
教學(xué)重點(diǎn):
引導(dǎo)學(xué)生發(fā)現(xiàn)三角形內(nèi)角和是180°。
教學(xué)難點(diǎn):
用不同方法驗(yàn)證三角形的內(nèi)角和是180°。
教學(xué)用具:
三種不同類(lèi)型三角形,多媒體課件。
教學(xué)過(guò)程:
一、創(chuàng)設(shè)情境,揭示課題。
與學(xué)生交流。(同學(xué)們,星期天你們喜歡玩什么? )
小明打破一塊三角形玻璃的情景。(課件出示)
(學(xué)生猜一猜,他會(huì)帶哪一塊到玻璃店配玻璃)
、劢榻B三角形內(nèi)角及三角形內(nèi)角和的含義。
④設(shè)疑揭題。
從剛才的情境中,我們知道,破掉的三角形玻璃,只要知道其中的兩內(nèi)角,就能配出和原來(lái)一樣的玻璃。究竟有什么奧妙?這節(jié)課我們就一起來(lái)研究有關(guān)三角形內(nèi)角和的知識(shí)。
【設(shè)計(jì)意圖:以小明打破玻璃為載體,引入本課的學(xué)習(xí),增強(qiáng)了學(xué)生的.好奇心與探究欲,使學(xué)生全身心地投入到學(xué)習(xí)活動(dòng)中來(lái)。拉近了數(shù)學(xué)課堂與現(xiàn)實(shí)生活的距離,激起學(xué)生濃厚的學(xué)習(xí)興趣。】
二、自主探索、驗(yàn)證猜想。
1、猜一猜。
猜一猜,它們的內(nèi)角和到底是誰(shuí)的大呢?(板貼三種不同類(lèi)型三角形)
2、量一量。
用量角器來(lái)量一量,算一算。
合作要求:
三種三角形和一張表格,四人小組合作,你們覺(jué)得怎樣分工度量的速度會(huì)最快?
溫馨提示:
測(cè)量的同學(xué):量出每個(gè)角的度數(shù),把它寫(xiě)在三角形里面。三個(gè)角的度數(shù)都量好后,再匯報(bào)給記錄的同學(xué)登記。
記錄的同學(xué):監(jiān)督小組其他同學(xué)量得是不是很準(zhǔn)確、真實(shí)。不能改掉小組成員度量出來(lái)的數(shù)據(jù)。(開(kāi)始)
量一量、算一算不同類(lèi)型三角形內(nèi)角和各是多少度?
、菩〗M合作探究
、菂R報(bào)交流
【學(xué)生匯報(bào)中可能會(huì)出現(xiàn)答案不是唯一的情況,如:180°、179°、181°等!
。4)說(shuō)一說(shuō)。
師:觀(guān)察這些測(cè)量結(jié)果你能發(fā)現(xiàn)什么(三角形內(nèi)角和大約是180°左右)?
3、驗(yàn)證。
。1)剪拼、撕拼
用度量的方法驗(yàn)證,得到的結(jié)果不統(tǒng)一。有沒(méi)有比度量更精確的驗(yàn)證方法?也就是不用度量你能用別的方法驗(yàn)證嗎?
【學(xué)情預(yù)設(shè):生:把三角形的三個(gè)角剪下來(lái),再拼成一個(gè)角。】
。2)折拼
用剪拼的方法是比較精確,美中不足就是把三角形給剪了或是撕了。有沒(méi)有更好驗(yàn)證方法?(用折的方法—課件演示)
(3)觀(guān)察小結(jié)。
現(xiàn)在大家知道這幾個(gè)三角形的內(nèi)角和是多少度嗎?
任何三角形的內(nèi)角和都是180°。
4、揭疑解惑。
小明為什么帶只剩兩個(gè)角的三角形玻璃到玻璃店配玻璃?
【設(shè)計(jì)意圖:探索是數(shù)學(xué)的生命線(xiàn)。本環(huán)節(jié)以學(xué)生探索活動(dòng)為主,讓學(xué)生在“量一量”、“折一折、拼一拼”中充分的探索活動(dòng)中發(fā)現(xiàn)問(wèn)題、提出問(wèn)題、舉例驗(yàn)證、建立模型,讓學(xué)生在“做數(shù)學(xué)”過(guò)程中理解和掌握新知識(shí),為學(xué)生建立良好的學(xué)習(xí)空間!
四、鞏固深化。
師:學(xué)會(huì)了知識(shí),我們就要懂得去運(yùn)用。下面,我們就根據(jù)三角形的內(nèi)角和的知識(shí)來(lái)解決一些相關(guān)數(shù)學(xué)問(wèn)題。
1、選一選。哪三個(gè)角能組成一個(gè)三角形的三個(gè)內(nèi)角?(課件出示)
2、算一算。求出三角形三個(gè)角的度數(shù)。(課件出示)
猜一猜。三角形中有一個(gè)角是60°,猜一猜它是什么三角形。
【設(shè)計(jì)意圖:練習(xí)設(shè)計(jì)力求形式多樣,循序漸進(jìn),既鞏固新知,又促進(jìn)學(xué)生發(fā)散思維能力!
五、回顧實(shí)踐、全課總結(jié)
同學(xué)們通過(guò)這堂課的活動(dòng)學(xué)習(xí),說(shuō)說(shuō)你感受最深的是什么?讓老師和同學(xué)們分享你的收獲!
六、課后思考、拓展延伸。
一個(gè)三角形,剪掉一個(gè)角,剩下圖形的內(nèi)角和是多少?
。▓D略,等腰三角形,剪掉一個(gè)底角)
三角形內(nèi)角和教案2
探索與發(fā)現(xiàn):三角形內(nèi)角和
課型
新授課
設(shè)計(jì)說(shuō)明
本節(jié)課是在學(xué)生已經(jīng)掌握了鈍角、銳角、直角、平角及三角形分類(lèi)的基礎(chǔ)上,讓學(xué)生通過(guò)直觀(guān)操作來(lái)認(rèn)識(shí)和學(xué)習(xí)的。
1.重視知識(shí)的探究與發(fā)現(xiàn)。
在教學(xué)中,概念的形成沒(méi)有直接給出,而是整節(jié)課都是在引導(dǎo)學(xué)生的實(shí)驗(yàn)操作、活動(dòng)探究中進(jìn)行。在探究活動(dòng)中,不但重視知識(shí)的形成過(guò)程,而且注意留給學(xué)生充分進(jìn)行主動(dòng)探究和交流的空間,讓學(xué)生歸納出三角形內(nèi)角和等于180°。
2.重視學(xué)生的合作探究學(xué)習(xí)。
使學(xué)生能夠積極主動(dòng)地參與到數(shù)學(xué)活動(dòng)中,能在實(shí)踐中感知、發(fā)表自己的見(jiàn)解,學(xué)生感受到通過(guò)自己的努力取得成功所帶來(lái)的滿(mǎn)足感,同時(shí)也培養(yǎng)了學(xué)生的探究能力和創(chuàng)新能力。
課前準(zhǔn)備
教師準(zhǔn)備:PPT課件 量角器 直尺 三角尺
學(xué)生準(zhǔn)備:量角器 三角尺
教學(xué)過(guò)程
一、常識(shí)導(dǎo)入。(3分鐘)
1.介紹帕斯卡:早在300多年前有一個(gè)科學(xué)家,他在12歲時(shí)驗(yàn)證了任意三角形的`內(nèi)角和都是180°,他就是法國(guó)科學(xué)家、物理學(xué)家帕斯卡。
2.導(dǎo)入新課:這節(jié)課我們也來(lái)驗(yàn)證一下三角形的內(nèi)角和。
1.傾聽(tīng)教師的介紹,了解帕斯卡。
2.明確本節(jié)課的學(xué)習(xí)內(nèi)容。
1.填空。
(1)有一個(gè)角是鈍角的三角形是( )三角形;有一個(gè)角是直角的三角形是( )三角形;三個(gè)角都是銳角的三角形是( )三角形。
(2)平角=( )°
直角=( )°
周角=( )°
二、合作交流,探究新知。(18分鐘)
(一)量算法。
1.探究特殊三角形的內(nèi)角和。
(1)出示一副三角尺,引導(dǎo)學(xué)生說(shuō)一說(shuō)各個(gè)角的度數(shù)。
(2)引導(dǎo)學(xué)生算一算它們的內(nèi)角和各是多少度。
(3)引導(dǎo)學(xué)生得出結(jié)論。
2.探究一般三角形的內(nèi)角和。
(1)引導(dǎo)學(xué)生猜一猜其他三角形的內(nèi)角和是多少度。
(2)組織學(xué)生驗(yàn)證一般三角形的內(nèi)角和是180°。
、僖龑(dǎo)學(xué)生量出每個(gè)內(nèi)角的度數(shù),再計(jì)算三個(gè)內(nèi)角的和。
、谝龑(dǎo)學(xué)生分工合作,把結(jié)果填入記錄表中。
③引導(dǎo)學(xué)生說(shuō)說(shuō)自己的發(fā)現(xiàn)。
(3)引導(dǎo)學(xué)生明確由于測(cè)量有誤差,實(shí)際上三角形的內(nèi)角和是180°。
(二)剪拼法。
1.組織學(xué)生用剪拼的方法求三角形的內(nèi)角和。
2.引導(dǎo)學(xué)生總結(jié)發(fā)現(xiàn)。
3.課件演示,得出三角形的內(nèi)角和是180°的結(jié)論。
(三)折拼法。
1.引導(dǎo)學(xué)生結(jié)合剪拼法嘗試折拼法。
2.引導(dǎo)學(xué)生得出結(jié)論。
3.課件演示折拼法。
(一)1.(1)說(shuō)出每個(gè)三角尺中各個(gè)角的度數(shù)。
、90°;60°;30°。
、90°;45°;45°。
(2)獨(dú)立算出每個(gè)三角尺的內(nèi)角和。
(3)得出結(jié)論:這兩個(gè)三角尺的內(nèi)角和都是180°。
2.(1)同桌之間互相說(shuō)說(shuō)自己的看法。
猜測(cè):一種是內(nèi)角和可能是180°,另一種是內(nèi)角和一定是180°。
(2)小組合作進(jìn)行探究,量一量,算一算,說(shuō)一說(shuō)。
三角形種類(lèi) | 每個(gè)內(nèi)角 的度數(shù) | 三個(gè)內(nèi) 角的和 | ||
銳角三角形 | 65° | 46° | 68° | 179° |
鈍角三角形 | 110° | 25° | 46° | 181° |
等腰三角形 | 70° | 55° | 55° | 180° |
等邊三角形 | 60° | 60° | 60° | 180° |
通過(guò)觀(guān)察發(fā)現(xiàn):三角形的內(nèi)角和都在180°左右。
(3)聽(tīng)老師講解,明確三角形的內(nèi)角和是180°。
(二)1.把一個(gè)三角形的三個(gè)內(nèi)角剪下來(lái),小組內(nèi)拼合。在拼合過(guò)程中要注意:頂點(diǎn)重合,三個(gè)角拼合。
2.發(fā)現(xiàn)三角形的三個(gè)內(nèi)角正好拼成了一個(gè)平角,也就是180°。
3.觀(guān)看課件演示,明確三角形的三個(gè)內(nèi)角拼成了一個(gè)平角,所以它的內(nèi)角和是180°。
(三)1.動(dòng)手折一折、拼一拼。
2.得出結(jié)論:三角形的三個(gè)內(nèi)角拼在一起正好是一個(gè)平角,所以三角形的內(nèi)角和是180°。
3.觀(guān)看課件演示,再次明確三角形的內(nèi)角和是180°。
2.算一算。
在一個(gè)直角三角形中,已知一個(gè)銳角是35°,另一個(gè)銳角是多少度?
3.在能組成三角形的三個(gè)角的后面畫(huà)“√”。
(1)90°;20°;70°。 ( )
(2)100°;50°;50°。( )
(3)70°;70°;70°。( )
(4)80°;70°;30°。( )
4.猜一猜。
有一個(gè)三角形,其中一個(gè)角是20°,它可能是什么三角形?
5.已知∠1、∠2、∠3是三角形的三個(gè)內(nèi)角,請(qǐng)你計(jì)算出每個(gè)三角形中∠1的度數(shù)。
(1)∠2=58° ∠3=48°
(2)∠2=∠3=70°
(3)∠1=∠2=∠3
三、鞏固練習(xí)。(16分鐘)
把正確答案的序號(hào)填在括號(hào)里。
1.把兩個(gè)小三角形合成一個(gè)大三角形,這個(gè)大三角形的內(nèi)角和是( )。
A.90° B.180° C.360°
2.一個(gè)三角形中有兩個(gè)銳角,則第三個(gè)角( )。
A.也是銳角
B.一定是直角
C.一定是鈍角
D.無(wú)法確定
小組合作,選一選,明確答案。
1.明確任何一個(gè)三角形的內(nèi)角和都是180°,三角形的內(nèi)角和與三角形的大小無(wú)關(guān)。
2.通過(guò)討論,明確任何一個(gè)三角形都至少有兩個(gè)銳角,所以無(wú)法確定。
6.如下圖,在直角三角形中,已知∠2=30°,不計(jì)算,你知道∠1的度數(shù)嗎?
四、課堂總結(jié),拓展延伸。(3分鐘)
1.總結(jié)本節(jié)課的學(xué)習(xí)內(nèi)容。
2.布置課后作業(yè)。
談自己本節(jié)課的收獲。
三角形內(nèi)角和教案3
教學(xué)目標(biāo):
1、知識(shí)目標(biāo):通過(guò)測(cè)量、拼、折疊等方法探索和發(fā)現(xiàn)三角形的內(nèi)角和等于180°;已知三角形兩個(gè)角的度數(shù),會(huì)求出第三個(gè)角的度數(shù)。
2、能力目標(biāo):通過(guò)討論爭(zhēng)辯、操作、推理等培養(yǎng)學(xué)生的思維能力和解決問(wèn)題的能力;培養(yǎng)學(xué)生的空間觀(guān)念,使學(xué)生的創(chuàng)新能力得到發(fā)展;使學(xué)生初步掌握由特殊到一般的邏輯思辨方法和先猜想后驗(yàn)證的研究問(wèn)題的方法。
3、情感目標(biāo):培養(yǎng)學(xué)生的合作精神和探索精神;培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)的意識(shí)。
教學(xué)重、難點(diǎn):
掌握三角形的內(nèi)角和是180°。驗(yàn)證三角形的內(nèi)角和是180°。
學(xué)生分析:
在上學(xué)期學(xué)生已經(jīng)掌握了角的分類(lèi)及度量問(wèn)題。在本課之前,學(xué)生又研究了三角形的分類(lèi)。這些都為進(jìn)一步研究三角形內(nèi)角和作了知識(shí)儲(chǔ)備和心理準(zhǔn)備,為本課內(nèi)容的教學(xué)作了鋪墊。三角形的內(nèi)角和是三角形的一個(gè)重要性質(zhì)。它有助于理解三角形的三個(gè)內(nèi)角之間的關(guān)系,是進(jìn)一步學(xué)習(xí)、研究幾何問(wèn)題的基礎(chǔ)。
教學(xué)流程:
一、創(chuàng)設(shè)情境,激發(fā)興趣
(課件出示:兩個(gè)三角形爭(zhēng)論,大的對(duì)小的說(shuō),我的內(nèi)角和比你大。)
。▽W(xué)生小聲議論著,爭(zhēng)論著。)
師:同學(xué)們,你們能不能幫助大三角形和小三角形解決這個(gè)問(wèn)題?
生:可以把這兩個(gè)三角形的'內(nèi)角比一比。
生:它們不是一個(gè)角在比較,可怎么比呀?
生:我們先畫(huà)出一個(gè)大三角形,再畫(huà)一個(gè)小三角形。分別量一量這兩個(gè)三角形三個(gè)內(nèi)角的度數(shù),這樣就知道誰(shuí)的內(nèi)角和大,誰(shuí)的內(nèi)角和小啦。
師:那好,我們今天就來(lái)研究“三角形的內(nèi)角和”。(板書(shū)課題。)
【設(shè)計(jì)意圖:通過(guò)多媒體出示,引起學(xué)生興趣,使學(xué)生想探索大、小三角形的內(nèi)角和到底誰(shuí)大?】
二、動(dòng)手操作,探索新知
1、初步感知。
師讓學(xué)生分別畫(huà)出不同形狀的三角形。學(xué)生用量角器測(cè)量三角形三個(gè)內(nèi)角的度數(shù),并做著記錄,并統(tǒng)一填表格。(表格略。)
生匯報(bào)測(cè)量的結(jié)果:內(nèi)角和約等于180°。
師啟發(fā)學(xué)生發(fā)現(xiàn)三角形的內(nèi)角和180°。(師板書(shū):三角形的內(nèi)角和是180°。)
【設(shè)計(jì)意圖:通過(guò)這種方法可以得出準(zhǔn)確的結(jié)論,也容易被學(xué)生理解和接受?赡艹霈F(xiàn)問(wèn)題:用測(cè)量的方法得到的結(jié)果不是剛好180°。使學(xué)生明白是因?yàn)闇y(cè)量存在誤差的緣故!
2、用拼角法驗(yàn)證。
師:剛才同學(xué)們發(fā)現(xiàn),三角形的內(nèi)角和約等于180°,那么到底是不是這樣呢?
生:我們手里有一些三角形,可以動(dòng)手拼一拼。
生:還可以剪一剪。
師:那同學(xué)們就開(kāi)始吧!
(學(xué)生動(dòng)手進(jìn)行拼、剪、折等方法,檢驗(yàn)三角形內(nèi)角和的度數(shù)。)
生:銳角三角形的內(nèi)角可以拼成一個(gè)平角。因?yàn)槠浇鞘?80°,所以銳角三角形的三個(gè)內(nèi)角和是180°。
生:我把一個(gè)直角三角形的三個(gè)內(nèi)角剪下來(lái),拼成了一個(gè)平角,所以直角三角形的三個(gè)內(nèi)角和也是180°。
生:鈍角三角形的內(nèi)角和也是180°。
。◣煱鍟(shū):三角形的內(nèi)角和是180°。)
【設(shè)計(jì)意圖:使學(xué)生明確,因?yàn)槿嫜芯苛酥苯侨切、銳角三角形和鈍角三角形這三類(lèi)三角形的內(nèi)角和,所以可以得出“三角形的內(nèi)角和等于180°”這一結(jié)論。通過(guò)這些過(guò)程使學(xué)生明白:探究問(wèn)題有不同的方法、途徑,并且方法之間可以互為驗(yàn)證,達(dá)到結(jié)論的統(tǒng)一,從而使學(xué)生明白獲得探究問(wèn)題的方法比獲得結(jié)論更為重要!
三、鞏固新知,拓展應(yīng)用
1.出示題目:在三角形中,已知∠1=78°,∠2=44°,求∠3=的度數(shù)。
2.已知∠1、∠2、∠3是三角形的三個(gè)內(nèi)角,猜一猜下面的三角形各是什么三角形?(圖略,分別是銳角、直角、鈍角三角形。)學(xué)生猜后,教師抽去遮蓋的紙,進(jìn)行驗(yàn)證。
通過(guò)以上的練習(xí)使學(xué)生對(duì)三角形內(nèi)角和的應(yīng)用有個(gè)初步認(rèn)識(shí),并積累解決問(wèn)題的經(jīng)驗(yàn)。
3.師:(出示一個(gè)大三角形)它的內(nèi)角和是多少度?
生:180 °。
師:(出示一個(gè)很小的三角形)它的內(nèi)角和是多少度?
生:180 °。
師:(把大三角形平均分成兩份。指均分后的一個(gè)小三角形)它的內(nèi)角和是多少度?(生有的答90°,有的答180°。)
師:哪個(gè)對(duì)?為什么?
生:180°對(duì),因?yàn)樗是一個(gè)三角形。
師:每個(gè)小三角形的度數(shù)是180°,那么這樣的兩個(gè)小三角形拼成一個(gè)大三角形,內(nèi)角和是多少度?(這時(shí)學(xué)生的答案又出現(xiàn)了180°和360°兩種。)師:究竟誰(shuí)對(duì)呢?(學(xué)生臉上露出疑問(wèn)。經(jīng)過(guò)一番激烈的討論探究后,學(xué)生開(kāi)始舉手回答。)
生:180°。因?yàn)閮蓚(gè)三角形拼在一起,就變成了一個(gè)三角形了,每個(gè)三角形的內(nèi)角和總是180°。
生:我發(fā)現(xiàn)兩個(gè)小三角形拼成一個(gè)大三角形,拼接在一起的兩條邊上的兩個(gè)角沒(méi)有了,比原來(lái)兩個(gè)三角形少180°,所以大三角形的內(nèi)角和還是180°,不是360°。
師:你真聰明。(課件演示。)
四、小結(jié)
師:同學(xué)們,你們今天學(xué)了“三角形的內(nèi)角和是180°”的新知識(shí),現(xiàn)在能來(lái)幫助大、小三角形進(jìn)行評(píng)判了吧?(生答能。)
師:說(shuō)一說(shuō)本節(jié)課的收獲。這節(jié)課你掌握了哪些知識(shí)?學(xué)會(huì)了哪些研究問(wèn)題的方法?
五、探究性作業(yè)
求下面幾個(gè)多邊形的內(nèi)角和。(圖形略。)
【設(shè)計(jì)意圖:通過(guò)這樣的練習(xí),培養(yǎng)學(xué)生思維的靈活性、多樣性,使不同層次的學(xué)生得到不同的發(fā)展,體現(xiàn)教學(xué)的層次性!
反思:
1、重視動(dòng)手操作,讓學(xué)生在探究中收獲知識(shí)!稊(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“有效的數(shù)學(xué)學(xué)習(xí)活動(dòng)不能單純地依賴(lài)模仿與記憶,動(dòng)手實(shí)踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式!北竟(jié)課通過(guò)量、折、剪、拼等多種活動(dòng),使學(xué)生主動(dòng)探究,找到新舊知識(shí)的聯(lián)系,得出研究問(wèn)題的結(jié)論,有利于學(xué)生培養(yǎng)空間觀(guān)念和動(dòng)手操作能力。
2、小組合作學(xué)習(xí)是新課程倡導(dǎo)的學(xué)習(xí)方式,有利于培養(yǎng)學(xué)生的合作意識(shí)、探索能力、團(tuán)隊(duì)精神。我們要從平時(shí)抓起,在平常的課堂中開(kāi)展小組合作學(xué)習(xí),可以是前后四人為一組,深入探究合作學(xué)習(xí)的方法和途徑。這樣學(xué)生學(xué)習(xí)方式的轉(zhuǎn)變才能落到實(shí)處,才不會(huì)變成某些公開(kāi)課的擺設(shè)
三角形內(nèi)角和教案4
【教學(xué)目標(biāo)】
1、知識(shí)與技能:
(1)理解和掌握三角形的內(nèi)角和是180°。
(2)運(yùn)用三角形的內(nèi)角和知識(shí)解決實(shí)際問(wèn)題和拓展性問(wèn)題。
2、過(guò)程與方法:
。1)通過(guò)測(cè)量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個(gè)內(nèi)角的和等于180°。
(2)知道三角形兩個(gè)角的度數(shù),能求出第三個(gè)角的度數(shù)。
(3)發(fā)展學(xué)生動(dòng)手操作、觀(guān)察比較和抽象概括的能力。
3、情感態(tài)度與價(jià)值觀(guān):
讓學(xué)生體驗(yàn)數(shù)學(xué)活動(dòng)的'探索樂(lè)趣,通過(guò)教學(xué)中的活動(dòng)體會(huì)數(shù)學(xué)的轉(zhuǎn)化思想。
【教學(xué)重、難點(diǎn)】
教學(xué)重點(diǎn):理解掌握三角形的內(nèi)角和是180°。
教學(xué)難點(diǎn):運(yùn)用三角形的內(nèi)角和知識(shí)解決實(shí)際問(wèn)題。
【教具準(zhǔn)備】
教學(xué)課件、各種三角形
【教學(xué)過(guò)程】
一、創(chuàng)設(shè)情景,引出問(wèn)題
1、猜謎語(yǔ):
形狀似座山,穩(wěn)定性能堅(jiān)。三竿首尾連,學(xué)問(wèn)不簡(jiǎn)單。
(打一圖形名稱(chēng))
2、猜三角形
師:老師這有1個(gè)三角形,它的一部分被智慧星給遮住了,猜猜這是什么三角形?它里面會(huì)出現(xiàn)兩個(gè)直角嗎?為什么?
3、引出課題。
師:為什么不會(huì)出現(xiàn)兩個(gè)直角?今天我們就再次走進(jìn)數(shù)學(xué)王國(guó),探討三角形的內(nèi)角和的奧秘。(板書(shū)課題)
二、探究新知
1、三角形的內(nèi)角和
師:三角形內(nèi)角和指的是什么?
2、猜一猜。
師:這個(gè)三角形的內(nèi)角和是多少度?
3、驗(yàn)證。
讓學(xué)生用自己喜歡的方式驗(yàn)證三角形的內(nèi)角和是不是180°。
4、學(xué)生匯報(bào)。
。1)測(cè)量
師:匯報(bào)的測(cè)量結(jié)果,有的是180°,有的不是180°,為什么會(huì)出現(xiàn)這種情況?有沒(méi)有別的方法驗(yàn)證?
。2)剪拼
A、學(xué)生上臺(tái)演示。
B、請(qǐng)大家三人小組合作,用剪拼的方法驗(yàn)證其它三角形。
C、師演示。
。3)折拼
師:有沒(méi)有別的驗(yàn)證方法?我在電腦里收索到折的方法,請(qǐng)同學(xué)們看一看他是怎么折的(課件演示)。
。4)結(jié)論:三角形的內(nèi)角和是180。
(5)數(shù)學(xué)小知識(shí)。
5、鞏固知識(shí)。
。1)解決課前問(wèn)題,為什么一個(gè)三角形不可能有兩個(gè)直角?一個(gè)三角形中可以有2個(gè)鈍角嗎?
。2)把兩個(gè)小三角形拼在一起,問(wèn):大三角形的內(nèi)角和是多少度。
教師:為什么不是360°?
三、解決相關(guān)問(wèn)題
師:接下來(lái),利用三角形的內(nèi)角和我們來(lái)解決一些相關(guān)的問(wèn)題吧!
1、看圖,求未知角的度數(shù)。
2、判斷。
3、如果一個(gè)都不知道,或只知道1個(gè)角,你能知道三角形各角的度數(shù)嗎?
求出下面三角形各角的度數(shù)。
(1)我三邊相等。
。2)我是等腰三角形,我的頂角是96°。
(3)我有一個(gè)銳角是40°。
4、求四邊形、五邊形內(nèi)角和。
四、總結(jié)。
師:這節(jié)課你有什么收獲?
五、板書(shū)設(shè)計(jì):(略)
三角形內(nèi)角和教案5
(一)教材的地位和作用
《三角形內(nèi)角和》一課是人教版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教材四年級(jí)下冊(cè)第五單元的內(nèi)容,是在學(xué)生學(xué)習(xí)了《三角形的特性》以及《三角形三邊關(guān)系》,《三角形的分類(lèi)》之后進(jìn)行的,在此之后則是《圖形的拼組》,它是三角形的一個(gè)重要特征,也是掌握多邊形內(nèi)角和及解決其他實(shí)際問(wèn)題的基礎(chǔ),因此,學(xué)習(xí),掌握三角形的內(nèi)角和是180°這一規(guī)律具有重要意義。
(二)教學(xué)目標(biāo)
基于以上對(duì)教材的分析以及對(duì)教學(xué)現(xiàn)狀的思考,我從知識(shí)與技能,教學(xué)過(guò)程與方法,情感態(tài)度價(jià)值觀(guān)三方面擬定了本節(jié)課的教學(xué)目標(biāo):
1。通過(guò)"量一量","算一算","拼一拼","折一折"的小組活動(dòng)的方法,探索發(fā)現(xiàn)驗(yàn)證三角形內(nèi)角和等于180°,并能應(yīng)用這一知識(shí)解決一些簡(jiǎn)單問(wèn)題。
2。通過(guò)把三角形的內(nèi)角和轉(zhuǎn)化為平角進(jìn)行探究實(shí)驗(yàn),滲透"轉(zhuǎn)化"的數(shù)學(xué)思想。
3。通過(guò)數(shù)學(xué)活動(dòng)使學(xué)生獲得成功的體驗(yàn),增強(qiáng)自信心。培養(yǎng)學(xué)生的創(chuàng)新意識(shí),探索精神和實(shí)踐能力。
(三)教學(xué)重,難點(diǎn)
因?yàn)閷W(xué)生已經(jīng)掌握了三角形的概念,分類(lèi),熟悉了鈍角,銳角,平角這些角的知識(shí)。對(duì)于三角形的內(nèi)角和是多少度,學(xué)生并不陌生,也有提前預(yù)習(xí)的習(xí)慣,學(xué)生幾乎都能回答出三角形的內(nèi)角和是180°。在整個(gè)過(guò)程中學(xué)生要了解的是"內(nèi)角"的概念,如何驗(yàn)證得出三角形的內(nèi)角和是180°。因此本節(jié)課我提出的教學(xué)的重點(diǎn)是:驗(yàn)證三角形的內(nèi)角和是180°。
二、說(shuō)教法,學(xué)法
本節(jié)課主要是通過(guò)教師的精心引導(dǎo)和點(diǎn)撥,學(xué)生在小組中合作探索,通過(guò)量一量,折一折,撕一撕,畫(huà)一畫(huà),選擇不同的一種或者幾種方法來(lái)驗(yàn)證三角形的內(nèi)角和是180°。
因?yàn)椤墩n程標(biāo)準(zhǔn)》明確指出:"要結(jié)合有關(guān)內(nèi)容的教學(xué),引導(dǎo)學(xué)生進(jìn)行觀(guān)察,操作,猜想,培養(yǎng)學(xué)生初步的思維能力"。四年級(jí)學(xué)生經(jīng)過(guò)第一學(xué)段以及本單元的學(xué)習(xí),已經(jīng)掌握了三角形的分類(lèi),比較熟悉平角等有關(guān)知識(shí);具備了初步的動(dòng)手操作,主動(dòng)探究的能力,他們正處于由形象思維向抽象思維過(guò)渡的階段。因此,本節(jié)課,我將重點(diǎn)引導(dǎo)學(xué)生從"猜測(cè)――驗(yàn)證"展開(kāi)學(xué)習(xí)活動(dòng),讓學(xué)生感受這種重要的數(shù)學(xué)思維方式。
三,說(shuō)教學(xué)過(guò)程
我以引入,猜測(cè),證實(shí),深化和應(yīng)用五個(gè)活動(dòng)環(huán)節(jié)為主線(xiàn),讓學(xué)生通過(guò)自主探究學(xué)習(xí)進(jìn)行數(shù)學(xué)的思考過(guò)程,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。
引入
呈現(xiàn)情境:出示多個(gè)已學(xué)的平面圖形,讓學(xué)生認(rèn)識(shí)什么是"內(nèi)角"。( 把圖形中相鄰兩邊的夾角稱(chēng)為內(nèi)角) 長(zhǎng)方形有幾個(gè)內(nèi)角 (四個(gè))它的內(nèi)角有什么特點(diǎn) (都是直角)這四個(gè)內(nèi)角的和是多少 (360°)三角形有幾個(gè)內(nèi)角呢 從而引入課題。
【設(shè)計(jì)意圖】
讓學(xué)生整體感知三角形內(nèi)角和的知識(shí),這樣的教學(xué), 將三角形內(nèi)角和置于平面圖形內(nèi)角和的大背景中, 拓展了三角形內(nèi)角和的數(shù)學(xué)知識(shí)背景, 滲透數(shù)學(xué)知識(shí)之間的聯(lián)系, 有效地避免了新知識(shí)的"橫空出現(xiàn)"。
猜測(cè)
提出問(wèn)題:長(zhǎng)方形內(nèi)角和是360°,那么三角形內(nèi)角和是多少呢
【設(shè)計(jì)意圖】
引導(dǎo)學(xué)生提出合理猜測(cè):三角形的內(nèi)角和是180°。
(三)驗(yàn)證
。1)量:請(qǐng)學(xué)生每人畫(huà)一個(gè)自己喜歡的三角形,接著用量角器量一量,然后把這三個(gè)內(nèi)角的度數(shù)加起來(lái)算一算,看看得出的三角形的內(nèi)角和是多少度
(2)撕―拼:利用平角是180°這一特點(diǎn),啟發(fā)學(xué)生能否也把三角形的三個(gè)內(nèi)角撕下來(lái)拼在一起,成為一個(gè)平角 請(qǐng)學(xué)生同桌合作,從學(xué)具中選出一個(gè)三角形,撕下來(lái)拼一拼。
。3)折—拼:把三角形的三個(gè)內(nèi)角都向內(nèi)折,把這三個(gè)內(nèi)角拼組成一個(gè)平角,一個(gè)平角是180°,所以得出三角形的內(nèi)角和是180°。
(4)畫(huà):根據(jù)長(zhǎng)方形的內(nèi)角和來(lái)驗(yàn)證三角形內(nèi)角和是180°。
一個(gè)長(zhǎng)方形有4個(gè)直角,每個(gè)直角90°,那么長(zhǎng)方形的內(nèi)角和就是360°,每個(gè)長(zhǎng)方形都可以平均分成兩個(gè)直角三角形,每個(gè)直角三角形的內(nèi)角和就是180°。從長(zhǎng)方形的內(nèi)角和聯(lián)想到直角三角形的內(nèi)角和是180°。
【設(shè)計(jì)意圖】
利用已經(jīng)學(xué)過(guò)的知識(shí)構(gòu)建新的數(shù)學(xué)知識(shí), 這不僅有助于學(xué)生理解新的知識(shí), 而且是一種非常重要的學(xué)習(xí)方法。在探索三角形內(nèi)角和規(guī)律的教學(xué)中,注意引導(dǎo)學(xué)生將三角形內(nèi)角和與平角,長(zhǎng)方形四個(gè)內(nèi)角的和等知識(shí)聯(lián)系起來(lái), 并使學(xué)生在新舊知識(shí)的連接點(diǎn)和新知識(shí)的生長(zhǎng)點(diǎn)上把握好他們之間的內(nèi)在聯(lián)系。在整個(gè)探索過(guò)程中, 學(xué)生積極思考并大膽發(fā)言, 他們的創(chuàng)造性思維得到了充分發(fā)揮。
深化
質(zhì)疑: 大小不同的三角形, 它們的內(nèi)角和會(huì)是一樣嗎
觀(guān)察:(指著黑板上兩個(gè)大小不同但三個(gè)角對(duì)應(yīng)相等的三角形并說(shuō)明原因,三角形變大了, 但角的大小沒(méi)有變。)
結(jié)論: 角的兩條邊長(zhǎng)了, 但角的大小不變。因?yàn)榻堑拇笮∨c邊的長(zhǎng)短無(wú)關(guān)。
實(shí)驗(yàn): 教師先在黑板上固定小棒, 然后用活動(dòng)角與小棒組成一個(gè)三角形, 教師手拿活動(dòng)角的頂點(diǎn)處, 往下壓, 形成一個(gè)新的三角形, 活動(dòng)角在變大, 而另外兩個(gè)角在變小。這樣多次變化, 活動(dòng)角越來(lái)越大, 而另外兩個(gè)角越來(lái)越小。最后, 當(dāng)活動(dòng)角的兩條邊與小棒重合時(shí)。
結(jié)論:活動(dòng)角就是一個(gè)平角180°, 另外兩個(gè)角都是0°。
【設(shè)計(jì)意圖】
小學(xué)生由于年齡小, 容易受圖形或物體的外在形式的影響。教師主要是引導(dǎo)學(xué)生與角的有關(guān)知識(shí)聯(lián)系起來(lái),通過(guò)讓學(xué)生觀(guān)察利用"角的大小與邊的長(zhǎng)短無(wú)關(guān)"的舊知識(shí)來(lái)理解說(shuō)明。
對(duì)于利用精巧的小教具的.演示, 讓學(xué)生通過(guò)觀(guān)察,交流,想象, 充分感受三角形三個(gè)角之間的聯(lián)系和變化, 感悟三角形內(nèi)角和不變的原因。
(五)應(yīng)用
1。基礎(chǔ)練習(xí):書(shū)本練習(xí)十四的習(xí)題9,求出三角形各個(gè)角的度數(shù)。
2。變式練習(xí):一個(gè)三角形可能有兩個(gè)直角嗎 一個(gè)三角形可能有兩個(gè)鈍角嗎 你能用今天所學(xué)的知識(shí)說(shuō)明嗎
3。(1)將兩個(gè)完全一樣的直角三角形拼成一個(gè)大三角形, 這個(gè)大三角形的內(nèi)角和是多少
。2) 將一個(gè)大三角形分成兩個(gè)小三角形, 這兩個(gè)小三角形的內(nèi)角和分別是多少
4。智力大挑戰(zhàn): 你能求出下面圖形的內(nèi)角和嗎 書(shū)本練習(xí)十四的習(xí)題
【設(shè)計(jì)意圖】
習(xí)題是溝通知識(shí)聯(lián)系的有效手段。在本節(jié)課的四個(gè)層次的練習(xí)中, 能充分注意溝通知識(shí)之間的內(nèi)在聯(lián)系, 使學(xué)生從整體上把握知識(shí)的來(lái)龍去脈和縱橫聯(lián)系,逐步形成對(duì)知識(shí)的整體認(rèn)知, 構(gòu)建自己的認(rèn)知結(jié)構(gòu), 從而發(fā)展思維, 提高綜合運(yùn)用知識(shí)解決問(wèn)題的能力。
第一題將三角形內(nèi)角和知識(shí)與三角形特征結(jié)合起來(lái),引導(dǎo)學(xué)生綜合運(yùn)用內(nèi)角和知識(shí)和直角三角形,等邊三角形等圖形特征求三角形內(nèi)角的度數(shù)。
第二題將三角形內(nèi)角和知識(shí)與三角形的分類(lèi)知識(shí)結(jié)合起來(lái),引導(dǎo)學(xué)生運(yùn)用三角形內(nèi)角和的知識(shí)去解釋直角三角形,鈍角三角形中角的特征, 較好地溝通了知識(shí)之間的聯(lián)系。
第三題通過(guò)兩個(gè)三角形的分與合的過(guò)程,使學(xué)生感受此過(guò)程中三角內(nèi)角的 變化情況, 進(jìn)一步理解三角形內(nèi)角和的知識(shí)。
第四題是對(duì)三角形內(nèi)角和知識(shí)的進(jìn)一步拓展, 引導(dǎo)學(xué)生進(jìn)一步研究多邊形的內(nèi)角和。教學(xué)中, 學(xué)生能把這些多邊形分成幾個(gè)三角形, 將多邊形內(nèi)角和與三角形內(nèi)角和聯(lián)系起來(lái),并逐步發(fā)現(xiàn)多邊形內(nèi)角和的規(guī)律, 以此促進(jìn)學(xué)生對(duì)多邊形內(nèi)角和知識(shí)的整體構(gòu)建。
三角形內(nèi)角和教案6
尊敬的各位評(píng)委老師:
大家好!今天我很高興也很榮幸能有這個(gè)機(jī)會(huì)與大家共同交流,在深入鉆研教材,充分了解學(xué)生的基礎(chǔ)上,我準(zhǔn)備從以下幾個(gè)方面進(jìn)行說(shuō)課:
一、教材分析
“三角形的內(nèi)角和”是三角形的一個(gè)重要性質(zhì),它有助于學(xué)生理解三角形內(nèi)角之間的關(guān)系,是進(jìn)一步學(xué)習(xí)幾何的基礎(chǔ)。
二、教學(xué)目標(biāo)
1、知識(shí)與技能:明確三角形的內(nèi)角的概念,使學(xué)生自主探究發(fā)現(xiàn)三角形內(nèi)角和等于180°,并運(yùn)用這一規(guī)律解決問(wèn)題。
2、過(guò)程和方法:通過(guò)學(xué)生猜、量、拼、折、觀(guān)察等活動(dòng),培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題、提出問(wèn)題、分析問(wèn)題和解決問(wèn)題的能力。
3、情感與態(tài)度:使學(xué)生感受數(shù)學(xué)圖形之美及轉(zhuǎn)化思想,體驗(yàn)數(shù)學(xué)就在我們身邊。
三、教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):動(dòng)手操作、自主探究發(fā)現(xiàn)三角形的內(nèi)角和是180°,并能進(jìn)行簡(jiǎn)單的運(yùn)用。
教學(xué)難點(diǎn):采用多種途徑驗(yàn)證三角形的內(nèi)角和是180°。
四、學(xué)情分析
通過(guò)前面的學(xué)習(xí),學(xué)生已經(jīng)掌握了三角形的一些基礎(chǔ)知識(shí),會(huì)量角,部分學(xué)生已經(jīng)知道三角形內(nèi)角和是180°,但不知道怎樣得出這個(gè)結(jié)論。
五、教學(xué)法分析
本節(jié)課采用自主探索、合作交流的教學(xué)方法,學(xué)生自主參與知識(shí)的構(gòu)建。領(lǐng)悟轉(zhuǎn)化思想在解決問(wèn)題中的應(yīng)用。
六、課前準(zhǔn)備
1、教師準(zhǔn)備:多媒體課件、三角形教具。
2、學(xué)生準(zhǔn)備:銳、直、鈍角三角形各兩個(gè),量角器、剪刀。
七、教學(xué)過(guò)程
。ㄒ唬、創(chuàng)設(shè)情境,激趣導(dǎo)入
導(dǎo)入:“同學(xué)們,有三位老朋友已經(jīng)恭候我們多時(shí)了!埃ǔ鍪救切蝿(dòng)畫(huà)課件),讓學(xué)生依次說(shuō)出各是什么三角形。
課件分別閃爍三角形三個(gè)內(nèi)角,并介紹:“這三個(gè)角叫做三角形的內(nèi)角,把三個(gè)角的度數(shù)加起來(lái),就是三角形的內(nèi)角和。請(qǐng)學(xué)生畫(huà)一個(gè)三角形,要求:有兩個(gè)直角。為什么不能畫(huà),問(wèn)題在哪呢?這節(jié)課我們就一起來(lái)探究三角形的內(nèi)角和。板書(shū)課題。
。ǘ、自主探究、合作交流
1、探索特殊三角形內(nèi)角和
拿出自己的一副三角板,同桌之間互相說(shuō)一說(shuō)各個(gè)角的度數(shù)。
三角形內(nèi)角和是多少度呢?指名匯報(bào)。90°+30°+60°=180°
90°+45°+45°=180°
從剛才兩個(gè)三角形內(nèi)角和的計(jì)算中,你發(fā)現(xiàn)了什么?
2、探索一般三角形的內(nèi)角和
一般三角形的內(nèi)角和是多少度?猜一猜。你們能想辦法證明嗎?接下來(lái),我們采用小組合作的方式進(jìn)行探究,看看哪個(gè)組的方法多而且富有新意。
3、匯報(bào)交流
請(qǐng)小組代表匯報(bào)方法。
1)量:你測(cè)量的三個(gè)內(nèi)角分別是多少度?和呢?(有不同意見(jiàn))
沒(méi)有統(tǒng)一的結(jié)果,有沒(méi)有其他方法?
2)剪―拼:把三角形的三個(gè)內(nèi)角剪下來(lái)拼在一起,成為一個(gè)平角,利用平角是180°這一特點(diǎn),得出結(jié)論。(學(xué)生嘗試驗(yàn)證)
3)折拼:學(xué)生邊演示邊匯報(bào)。把三角形的三個(gè)內(nèi)角都向內(nèi)折,把這三個(gè)內(nèi)角拼組成一個(gè)平角。所以得出三角形的內(nèi)角和是180°。(學(xué)生嘗試驗(yàn)證)
4)教師課件驗(yàn)證結(jié)果。
請(qǐng)看屏幕,老師也來(lái)驗(yàn)證一下,是不是和你們的結(jié)果一樣?播放課件。我們可以得到一個(gè)怎樣的結(jié)論?
學(xué)生回答后教師板書(shū):三角形的內(nèi)角和是180°
為什么有的小組用測(cè)量的方法不能得到180°?(誤差)
4、驗(yàn)證深化
質(zhì)疑:大小不同的'三角形,它們的內(nèi)角和會(huì)是一樣嗎?(一樣)
誰(shuí)能說(shuō)一說(shuō)不能畫(huà)出有兩個(gè)直角的三角形的原因?
。ㄈ、應(yīng)用規(guī)律,解決問(wèn)題:
揭示規(guī)律后,學(xué)生要掌握知識(shí),就要通過(guò)解答實(shí)際問(wèn)題。
1、為了讓學(xué)生積極參與,我設(shè)計(jì)了闖關(guān)的活動(dòng)來(lái)激勵(lì)學(xué)生的興趣。闖關(guān)成功會(huì)獲得小獎(jiǎng)?wù)隆?/p>
第一關(guān):基礎(chǔ)練習(xí),要求學(xué)生利用“三角形內(nèi)角和是180°”這一規(guī)律在三角形內(nèi)已知兩個(gè)角,求第三個(gè)角(課件出示)
第二關(guān),提高練習(xí),
、僖阎妊切蔚牡捉,求頂角。②求等邊三角形每個(gè)角的度數(shù)是多少。直角三角形已知一個(gè)銳角,求另一個(gè)。
讓學(xué)生靈活應(yīng)用隱含條件來(lái)解決問(wèn)題,進(jìn)一步提高能力。
2、小組合作練習(xí),完成相應(yīng)做一做。
。ㄋ模、課堂總結(jié),效果檢測(cè)。
一節(jié)成功的好課要有一個(gè)好的開(kāi)頭,更要有一個(gè)完美的結(jié)尾,數(shù)學(xué)是使人變聰明的學(xué)科,通過(guò)這節(jié)課的學(xué)習(xí),你收獲了什么?學(xué)生們暢所欲言。接下來(lái)老師要檢查大家的學(xué)習(xí)效果,學(xué)生完成答題卡,組長(zhǎng)評(píng)判,集體匯報(bào)。
。ㄎ澹┳鳂I(yè)課下繼續(xù)探究三角形,看你有什么新發(fā)現(xiàn)。
八、板書(shū)設(shè)計(jì)
通過(guò)這樣的設(shè)計(jì),使學(xué)生不僅學(xué)到科學(xué)的探究方法,而且體驗(yàn)到探索的樂(lè)趣,使學(xué)生在自主中學(xué)習(xí),在探究中發(fā)現(xiàn),在發(fā)現(xiàn)中成長(zhǎng)。以上便是我對(duì)《三角形的內(nèi)角和》這一堂課的說(shuō)課,謝謝大家!
三角形內(nèi)角和教案7
教學(xué)目標(biāo):
1. 掌握三角形內(nèi)角和定理及其推論;
2. 弄清三角形按角的分類(lèi), 會(huì)按角的大小對(duì)三角形進(jìn)行分類(lèi);
3.通過(guò)對(duì)三角形分類(lèi)的學(xué)習(xí),使學(xué)生了解數(shù)學(xué)分類(lèi)的基本思想,并會(huì)用方程思想去解決一些圖形中求角的問(wèn)題。
4.通過(guò)三角形內(nèi)角和定理的證明,提高學(xué)生的邏輯思維能力,同時(shí)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)
5. 通過(guò)對(duì)定理及推論的分析與討論,發(fā)展學(xué)生的求同和求異的思維能力,培養(yǎng)學(xué)生聯(lián)系與轉(zhuǎn)化的辯證思想。
教學(xué)重點(diǎn):
三角形內(nèi)角和定理及其推論。
教學(xué)難點(diǎn):
三角形內(nèi)角和定理的證明
教學(xué)用具:
直尺、微機(jī)
教學(xué)方法:
互動(dòng)式,談話(huà)法
教學(xué)過(guò)程:
1、創(chuàng)設(shè)情境,自然引入
把問(wèn)題作為教學(xué)的出發(fā)點(diǎn),創(chuàng)設(shè)問(wèn)題情境,激發(fā)學(xué)生學(xué)習(xí)興趣和求知欲,為發(fā)現(xiàn)新知識(shí)創(chuàng)造一個(gè)最佳的心理和認(rèn)知環(huán)境。
問(wèn)題1 三角形三條邊的關(guān)系我們已經(jīng)明確了,而且利用上述關(guān)系解決了一些幾何問(wèn)題,那么三角形的三個(gè)內(nèi)角有何關(guān)系呢?
問(wèn)題2 你能用幾何推理來(lái)論證得到的關(guān)系嗎?
對(duì)于問(wèn)題1絕大多數(shù)學(xué)生都能回答出來(lái)(小學(xué)學(xué)過(guò)的),問(wèn)題2學(xué)生會(huì)感到困難,因?yàn)檫@個(gè)證明需添加輔助線(xiàn),這是同學(xué)們第一次接觸的新知識(shí)―――“輔助線(xiàn) ”。教師可以趁機(jī)告訴學(xué)生這節(jié)課將要學(xué)習(xí)的一個(gè)重要內(nèi)容(板書(shū)課題)
新課引入的好壞在某種程度上關(guān)系到課堂教學(xué)的成敗,本節(jié)課從舊知識(shí)切入,特別是從知識(shí)體系考慮引入,“學(xué)習(xí)了三角形邊的關(guān)系,自然想到三角形角的關(guān)系怎樣呢?”使學(xué)生感覺(jué)本節(jié)課學(xué)習(xí)的內(nèi)容自然合理。
2、設(shè)問(wèn)質(zhì)疑,探究嘗試
(1)求證:三角形三個(gè)內(nèi)角的和等于
讓學(xué)生剪一個(gè)三角形,并把它的三個(gè)內(nèi)角分別剪下來(lái),再拼成一個(gè)平面圖形。這里教師設(shè)計(jì)了電腦動(dòng)畫(huà)顯示具體情景。然后,圍繞問(wèn)題設(shè)計(jì)以下幾個(gè)問(wèn)題讓學(xué)生思考,教師進(jìn)行學(xué)法指導(dǎo)。
問(wèn)題1 觀(guān)察:三個(gè)內(nèi)角拼成了一個(gè)
什么角?問(wèn)題2 此實(shí)驗(yàn)給我們一個(gè)什么啟示?
(把三角形的三個(gè)內(nèi)角之和轉(zhuǎn)化為一個(gè)平角)
問(wèn)題3 由圖中AB與CD的關(guān)系,啟發(fā)我們畫(huà)一條什么樣的線(xiàn),作為解決問(wèn)題的橋梁?
其中問(wèn)題2是解決本題的關(guān)鍵,教師可引導(dǎo)學(xué)生分析。對(duì)于問(wèn)題3學(xué)生經(jīng)過(guò)思考會(huì)畫(huà)出此線(xiàn)的。這里教師要重點(diǎn)講解“輔助線(xiàn)”的有關(guān)知識(shí)。比如:為什么要畫(huà)這條線(xiàn)?畫(huà)這條線(xiàn)有什么作用?要讓學(xué)生知道“輔助線(xiàn)”是以后解決幾何問(wèn)題有力的工具。它的'作用在于充分利用條件;恰當(dāng)轉(zhuǎn)化條件;恰當(dāng)轉(zhuǎn)化結(jié)論;充分提示題目中各元素間的一些不明顯的關(guān)系,達(dá)到化難為易解決問(wèn)題的目的。
(2)通過(guò)類(lèi)比“三角形按邊分類(lèi)”,三角形按角怎樣分類(lèi)呢?
學(xué)生回答后,電腦顯示圖表。
(3)三角形中三個(gè)內(nèi)角之和為定值
,那么對(duì)三角形的其它角還有哪些特殊的關(guān)系呢?問(wèn)題1 直角三角形中,直角與其它兩個(gè)銳角有何關(guān)系?
問(wèn)題2 三角形一個(gè)外角與它不相鄰的兩個(gè)內(nèi)角有何關(guān)系?
問(wèn)題3 三角形一個(gè)外角與其中的一個(gè)不相鄰內(nèi)角有何關(guān)系?
其中問(wèn)題1學(xué)生很容易得出,提出問(wèn)題2之后,先給出三角形外角的定義,然后讓學(xué)生經(jīng)過(guò)分析討論,得出結(jié)論并書(shū)寫(xiě)證明過(guò)程。
這樣安排的目的有三點(diǎn):第一,理解定理之后的延伸――推論,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣。第二,模仿定理的證明書(shū)寫(xiě)格式,加強(qiáng)學(xué)生書(shū)寫(xiě)能力。第三,提高學(xué)生靈活運(yùn)用所學(xué)知識(shí)的能力。
3、三角形三個(gè)內(nèi)角關(guān)系的定理及推論
引導(dǎo)學(xué)生分析并嚴(yán)格書(shū)寫(xiě)解題過(guò)程
三角形內(nèi)角和教案8
本節(jié)微課視頻是蘇教版數(shù)學(xué)教科書(shū)四年級(jí)下冊(cè)第78~79頁(yè)的教學(xué)內(nèi)容。在教學(xué)之前,學(xué)生已經(jīng)掌握了角的概念、角的分類(lèi)和角的測(cè)量;認(rèn)識(shí)了三角形,知道三角形是由三條線(xiàn)段首尾相接圍成的圖形,有三個(gè)頂點(diǎn)、三條邊和三個(gè)角。這些已經(jīng)構(gòu)成學(xué)生進(jìn)一步學(xué)習(xí)的認(rèn)知基礎(chǔ)!度切蔚膬(nèi)角和》是三角形的一個(gè)重要性質(zhì)。學(xué)生在學(xué)習(xí)四年級(jí)上冊(cè)“角的度量”時(shí),通過(guò)測(cè)量三角尺三個(gè)角的度數(shù),知道三角尺三個(gè)角加起來(lái)的和是180度,再加上課前的預(yù)習(xí),大部分的學(xué)生已經(jīng)能得出結(jié)論:三角形的內(nèi)角和是180度,只不過(guò)他們不清楚其中的道理,只是機(jī)械性的記憶。因此,本節(jié)課的重點(diǎn)不是結(jié)論,而是驗(yàn)證結(jié)論的過(guò)程。教材組織學(xué)生對(duì)不同形狀、不同大小的三角形的內(nèi)角和進(jìn)行探索,通過(guò)轉(zhuǎn)化、推理、比較、操作和驗(yàn)證,總結(jié)概括出“所有三角形的內(nèi)角和都是180度”的規(guī)律,從而進(jìn)一步發(fā)展學(xué)生的空間觀(guān)念,提高學(xué)生的自主學(xué)習(xí)能力和推理能力。
下面就具體談?wù)勎⒄n的教學(xué)設(shè)計(jì):
一、 教學(xué)目標(biāo)
1、通過(guò)測(cè)量、轉(zhuǎn)化、觀(guān)察和比較等活動(dòng)探索發(fā)現(xiàn)并驗(yàn)證“三角形的內(nèi)角和是180度”的規(guī)律,并且能利用這一結(jié)論解決求三角形中未知角的度數(shù)等實(shí)際問(wèn)題。
2、通過(guò)折一折、拼一拼和剪一剪等一系列的操作活動(dòng)培養(yǎng)學(xué)生的聯(lián)想意識(shí)和動(dòng)手操作能力。體驗(yàn)驗(yàn)證結(jié)論的過(guò)程與方法,提高學(xué)生分析和解決問(wèn)題的能力。
3、使學(xué)生通過(guò)操作的'過(guò)程獲得發(fā)現(xiàn)規(guī)律的喜悅,獲得成就感,從而激發(fā)學(xué)生積極主動(dòng)學(xué)習(xí)數(shù)學(xué)的興趣。
二、 教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):讓學(xué)生親自驗(yàn)證并總結(jié)出三角形的內(nèi)角和是180度的結(jié)論
難點(diǎn):對(duì)不同驗(yàn)證方法的理解和掌握。
三、 教學(xué)過(guò)程
(一)質(zhì)疑——發(fā)現(xiàn)問(wèn)題,提出問(wèn)題
出示學(xué)生熟悉的一副三角尺,讓學(xué)生說(shuō)說(shuō)每塊三角尺中各個(gè)內(nèi)角的度數(shù)。試著計(jì)算每塊三角尺的三個(gè)內(nèi)角的度數(shù)加起來(lái)的和是多少度?
交流:不同三角尺的內(nèi)角和都是一樣的嗎?三角尺的內(nèi)角和有什么特征?
引導(dǎo)學(xué)生得出三角尺的三個(gè)內(nèi)角的度數(shù)和是180度。
提問(wèn):三角尺的形狀是什么三角形?三角尺的內(nèi)角和是180度,我們還可以說(shuō)成是什么?(得出結(jié)論:直角三角形的內(nèi)角和是180度。)
你有什么辦法驗(yàn)證這一結(jié)論呢?(動(dòng)手操作,尋找答案)
方法一:拿出不同的直角三角形,分別測(cè)量三個(gè)內(nèi)角的度數(shù),再求和。(提示存在誤差,但三個(gè)內(nèi)角的和都在180度左右)
方法二:用兩個(gè)相同的直角三角形拼成一個(gè)長(zhǎng)方形,由于長(zhǎng)方形的四個(gè)內(nèi)角和是360度,因此能得出一個(gè)直角三角形的三個(gè)內(nèi)角和是180度。
啟發(fā):直角三角形的內(nèi)角和是180度,這一結(jié)論讓你聯(lián)想到了什么?你能提出什么新的數(shù)學(xué)問(wèn)題呢?
引導(dǎo):從直角三角形的內(nèi)角和聯(lián)想到所有三角形的內(nèi)角和,提出問(wèn)題:所有三角形的內(nèi)角和都是180度嗎?
。ǘ┨骄俊治鰡(wèn)題,解決問(wèn)題
出示三個(gè)三角形:直角三角形、銳角三角形和鈍角三角形。
引導(dǎo):直角三角形的內(nèi)角和是180度了,由此我們聯(lián)想到銳角三角形和鈍角三角形的內(nèi)角和也有可能是180度。
提問(wèn):你有什么辦法來(lái)驗(yàn)證這一猜想呢?
拿出事先從課本第113頁(yè)剪下來(lái)的3個(gè)三角形,動(dòng)手操作,自主探索,發(fā)現(xiàn)規(guī)律。
方法一:可以像上面那樣先測(cè)量每個(gè)三角形的三個(gè)內(nèi)角的度數(shù),再計(jì)算出它們的和,看看能發(fā)現(xiàn)什么規(guī)律。學(xué)生測(cè)量計(jì)算,教師巡視指導(dǎo)。
引導(dǎo):測(cè)量時(shí)要盡量做到準(zhǔn)確,測(cè)量是存在誤差的,對(duì)于測(cè)量的不準(zhǔn)的同學(xué)要重新測(cè)定和確認(rèn),計(jì)算出它們的和,發(fā)現(xiàn)其中的規(guī)律。
方法二:既然是求三角形的內(nèi)角和,我們就可以想辦法把三角形的3個(gè)內(nèi)角拼在一起,看看拼成了什么角。那怎樣才能把3個(gè)內(nèi)角拼在一起呢?我們可以將三角形中的3個(gè)內(nèi)角撕下來(lái),再拼在一起,會(huì)發(fā)現(xiàn)拼成了一個(gè)平角,是180度。
方法三:把三角形的三個(gè)內(nèi)角撕下來(lái),雖然能將他們拼在一起,但是原有的三角形被破壞了。因此,我們還可以通過(guò)折一折的方法,把三個(gè)內(nèi)角折過(guò)來(lái)拼在一起,同樣會(huì)發(fā)現(xiàn)拼成一個(gè)平角,是180度。
方法四:將銳角三角形和鈍角三角形分別分成兩個(gè)直角三角形,利用直角三角形內(nèi)角和是180度進(jìn)行推理。180+180=360度,360-90-90=180度。
。ㄈw納——獲得結(jié)論
交流:回顧以上3個(gè)三角形的內(nèi)角和的探索過(guò)程,你發(fā)現(xiàn)了什么規(guī)律?
總結(jié):通過(guò)測(cè)量計(jì)算、拼一拼和折一折的方法,我們可以消除心中的問(wèn)號(hào),肯定得說(shuō)出所有三角形的內(nèi)角和都是180度這一結(jié)論。
(四)拓展——鞏固練習(xí)
1、將一個(gè)大三角形剪成兩個(gè)小三角形,每個(gè)小三角形的內(nèi)角和是多少度?
2、在一個(gè)三角形中,根據(jù)兩個(gè)內(nèi)角的度數(shù),求第三個(gè)內(nèi)角的度數(shù)?
三角形內(nèi)角和教案9
一、教材分析:
教材創(chuàng)設(shè)了一個(gè)有趣的問(wèn)題情境,以此激發(fā)學(xué)生的興趣,引出探索活動(dòng)。首先,教師應(yīng)使學(xué)生明確“內(nèi)角”的意義,然后引導(dǎo)學(xué)生探索三角形內(nèi)角和等于多少。大多數(shù)學(xué)生會(huì)想到用測(cè)量角的方法,此時(shí)就可以安排小組活動(dòng)。每組同學(xué)可以畫(huà)出大小、形狀不同的若干個(gè)三角形,分別量出三個(gè)內(nèi)角的度數(shù),并求出它們的和,填寫(xiě)在教材提供的表中。最后發(fā)現(xiàn),大小、形狀不同的三角形,每一個(gè)三角形內(nèi)角和都在180°左右。三角形的內(nèi)角和是否正好等于180°呢?教材中安排了兩個(gè)活動(dòng):一是把三角形三個(gè)內(nèi)角撕下來(lái),再拼在一起,組成一個(gè)平角,因此三角形內(nèi)角和是180度。二是把三個(gè)內(nèi)角折疊在一起,發(fā)現(xiàn)也能組成一個(gè)平角。每個(gè)活動(dòng)都要使學(xué)生動(dòng)手試一試,加深對(duì)三角形內(nèi)角和的認(rèn)識(shí),體驗(yàn)三角形內(nèi)角和性質(zhì)的探索過(guò)程。
二、學(xué)生狀況分析:
學(xué)生在本課學(xué)習(xí)前已經(jīng)認(rèn)識(shí)了三角形的基本特征及分類(lèi),并且在四年級(jí)(上冊(cè))教材里已經(jīng)知道了兩塊三角尺上的每一個(gè)角的度數(shù),學(xué)生課上對(duì)數(shù)學(xué)知識(shí)、能力和思考問(wèn)題的角度有一定的差異,因此比較容易出現(xiàn)解決問(wèn)題的策略多樣化。
三、學(xué)習(xí)目標(biāo):
1.通過(guò)測(cè)量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個(gè)內(nèi)角的和等于180°。
2.知道三角形兩個(gè)角的度數(shù),能求出第三個(gè)角的度數(shù)。
3.發(fā)展學(xué)生動(dòng)手操作、觀(guān)察比較和抽象概括的能力。體驗(yàn)數(shù)學(xué)活動(dòng)的探索樂(lè)趣,體會(huì)研究數(shù)學(xué)問(wèn)題的思想方法。
4.能應(yīng)用三角形內(nèi)角和的性質(zhì)解決一些簡(jiǎn)單的問(wèn)題。
四、教具、學(xué)具準(zhǔn)備:
課件、6張三角形的紙、學(xué)生準(zhǔn)備任意三角形。
五、教學(xué)過(guò)程:
。ㄒ唬┰O(shè)疑導(dǎo)入(2分鐘)
師:在平的數(shù)學(xué)學(xué)習(xí)中,我們經(jīng)常會(huì)使用一種工具——三角尺。(課件出示兩個(gè)三角尺)每個(gè)三角尺里都有三個(gè)角,我們把它叫內(nèi)角。(板書(shū)內(nèi)角)為了方便老師分別給兩個(gè)三角尺的內(nèi)角編上號(hào),誰(shuí)能告訴我它們分別是多少度?
師:請(qǐng)同學(xué)們仔細(xì)觀(guān)察比較一下,這兩個(gè)三角形有什么共同之處?
生:它們的內(nèi)角和都是180°。
師:你是怎么得出180°的?
生:30°+60°+90°=180°
師:那第二個(gè)呢?
生:45°+45°+90°=180°
師:同學(xué)們,通過(guò)剛才的算一算,我們得到這兩個(gè)直角三角形的內(nèi)角和都是180°,由此你想到什么呢?(這兩個(gè)直角三角形的內(nèi)角和都是180°,那其他的三角形呢?)
生A:其他三角形的內(nèi)角和也是180°
。ǘ﹦(dòng)手操作,探究問(wèn)題,以動(dòng)啟思(20分鐘)
1、師:這只是我們的一種猜測(cè),三角形的內(nèi)角和是否真的`等于180°,還需要我們?nèi)ヲ?yàn)證。接下來(lái),我們就來(lái)驗(yàn)證三角形的內(nèi)角和,老師為大家準(zhǔn)備了1號(hào)——6號(hào)6個(gè)三角形,下面請(qǐng)每個(gè)同學(xué)選擇一個(gè)三角形來(lái)驗(yàn)證。想一想,你準(zhǔn)備用什么樣的方法來(lái)驗(yàn)證三角形的內(nèi)角和,然后開(kāi)始驗(yàn)證。
(1)小組合作,討論驗(yàn)證方法
(2)匯報(bào)驗(yàn)證方法、結(jié)果
現(xiàn)在我們一起交流一下驗(yàn)證的結(jié)果,交流的時(shí)候,你先介紹一下驗(yàn)證的是幾號(hào)三角形,然后說(shuō)一說(shuō)是什么三角形,最后說(shuō)一說(shuō)內(nèi)角和是多少。
師:同學(xué)們我、其實(shí)剛才我在驗(yàn)證的時(shí)候很多同學(xué)有的還是量一量的方法,從剛才過(guò)程中來(lái)看量一量的方法還是有誤差,所以老師建議大家可以是有更加準(zhǔn)確、簡(jiǎn)便的方法來(lái)驗(yàn)證。
師:好,請(qǐng)同學(xué)們觀(guān)察大屏幕,這些三角形的內(nèi)角和都是180°,那么請(qǐng)問(wèn),現(xiàn)在我們能不能以下結(jié)論:所以的三角形的內(nèi)角和都是180°呢?
生:可以
師:難道你們都沒(méi)有懷疑這是老師故意安排好的呢?(沒(méi)有)那我告訴你們這就是老師故意安排好的,或許也是一種巧合。我們?cè)诳茖W(xué)研究的道路上就要敢于質(zhì)疑的精神,接下來(lái)我們?cè)趺崔k?(我們應(yīng)該在找一些三角形驗(yàn)證)這個(gè)建議非常好,找一些任意三角形這樣才有說(shuō)服力。
師:每個(gè)同學(xué)都準(zhǔn)備的三角形帶了嗎?下面就請(qǐng)同學(xué)來(lái)驗(yàn)證你們自己帶來(lái)的三角形的內(nèi)角和究竟是多少度。學(xué)生匯報(bào)交流。
同學(xué)們我們這樣驗(yàn)證,驗(yàn)證完嗎?(驗(yàn)證不完)
師:剛才我們通過(guò)算一算、拼一拼、折一折的方法,不管是老師提供的三角形還是你們自己準(zhǔn)備的三角形這些直角、銳角、鈍角三角形的內(nèi)角和都是180°,那么我們可以概括成什么呢?
生:我們發(fā)現(xiàn)每個(gè)三角形的三個(gè)內(nèi)角和都是180°。
課件出示結(jié)論:三角形的內(nèi)角和是180°)。
師:看來(lái)我們的猜測(cè)是正確的,現(xiàn)在讓我們用自豪的、肯定的語(yǔ)氣讀出我們的發(fā)現(xiàn):“三角形的內(nèi)角和是1800”。(板書(shū):三角形的內(nèi)角和是1800
(四)鞏固練習(xí):(15分鐘)
學(xué)會(huì)了知識(shí),我們就要懂得去運(yùn)用。下面,我們就根據(jù)三角形內(nèi)角和的知識(shí)來(lái)解決一些相關(guān)的數(shù)學(xué)問(wèn)題。(課件)
師:一塊三角尺的內(nèi)角和180°,兩塊同樣的三角尺拼成的一個(gè)大三角形的內(nèi)角和又是多少呢?
師:把大三角形平均分成兩份。它的(指均分后的一個(gè)小三角形)內(nèi)角和是多少度?(生有的答90 °,有的180 °。)
師:哪個(gè)對(duì)?為什么?
生:180°,因?yàn)樗是一個(gè)三角形。
師:每個(gè)小三角形的度數(shù)是180°,那么這樣的兩個(gè)小三角形拼成一個(gè)大三角形,內(nèi)角和是多少度?這時(shí)學(xué)生的答案又出現(xiàn)了180°和360°兩種。
師:究竟誰(shuí)對(duì)呢?大家可以在小組內(nèi)拼一拼,進(jìn)行討論
生1:180°,因?yàn)閮蓚(gè)三角形拼在一起,就變成了一個(gè)三角形了,每個(gè)三角形的內(nèi)角和總是180°。
生2:我發(fā)現(xiàn)兩個(gè)小三角形拼成一個(gè)大三角形,拼接在一起的兩條邊上的兩個(gè)角沒(méi)有了,就比原來(lái)兩個(gè)三角形少180 °,所以大三角形的內(nèi)角和還是180°,不是360°。
師:三角形不論位置、大小、形狀如何,它的內(nèi)角和總是180°
1、三角形ABC是等腰三角形,角A是頂角等于50度,角B=?角C=?
教師引導(dǎo)學(xué)生復(fù)習(xí)等腰三角形的特征,再讓學(xué)生談?wù)勏敕ā?/p>
教師匯總解法:
180度-50度=130度130度÷2度=65度
知識(shí)拓展:三角形ABC是等腰三角形,角B是底角等于50度,頂角角A=?(學(xué)生自主完成匯報(bào)結(jié)果)教師匯總解法:
50度×2=100度180度-100度=80度
2、一個(gè)直角三角形,一個(gè)銳角為35度,求另一個(gè)銳角的度數(shù)。
教師帶領(lǐng)學(xué)生復(fù)習(xí)直角三角形的特征。(指名匯報(bào))解法不唯一,只要學(xué)生思路正確老師應(yīng)及時(shí)給與肯定。教師匯總解法:
(1)180度-90度=90度90度-35度=55度
(2)180度-35度=145度145度-90度=55度
(3)90度+35度=125度180度-125度=55度
(4)90度-35度=55度
3、下面的說(shuō)法對(duì)嗎?
1)鈍角三角形的兩個(gè)銳角之和大于90度。()
2)大三角形的內(nèi)角和比小三角形的內(nèi)角和大。()
3)一個(gè)直角三角形中最多有一個(gè)直角。()
學(xué)生自主理解題意,教師引導(dǎo)學(xué)生說(shuō)出對(duì)或錯(cuò)的原因。
4、老師這還有一個(gè)難題需要解決,同學(xué)們?cè)敢饨邮芴魬?zhàn)嗎?
師:老師手里有一個(gè)信封,信封里露出一來(lái)個(gè)角,這個(gè)角的度數(shù)是45度,請(qǐng)同學(xué)們判斷一下,隱藏在信封里的三角形是什么三角形?
師:信封里還露出一來(lái)個(gè)角,這個(gè)角的度數(shù)是45度,它是這個(gè)三角形內(nèi)角中最小的銳角,請(qǐng)同學(xué)們判斷一下,隱藏在信封里的三角形是什么三角形?
5、想一想,下面圖形的內(nèi)角和分別是多少?
學(xué)生小組討論如何分割,教師巡視并參與討論,討論完后小組匯報(bào),指名板演。
(五)課堂小結(jié)
師:一節(jié)課快要結(jié)束了,那么我們回想一下這節(jié)課你有什么收獲,什么感想?
三角形內(nèi)角和教案10
教材分析
教材的小標(biāo)題為“探索與發(fā)現(xiàn)”,說(shuō)明這部分內(nèi)容要求學(xué)生自主探索,并發(fā)現(xiàn)有關(guān)三角形內(nèi)角和性質(zhì)。
教材創(chuàng)設(shè)了一個(gè)有趣的問(wèn)題情境,以此激發(fā)學(xué)生的興趣,引出探索活動(dòng)。首先,教師應(yīng)使學(xué)生明確“內(nèi)角”的意義,然后引導(dǎo)學(xué)生探索三角形內(nèi)角和等于多少。大多數(shù)學(xué)生會(huì)想到用測(cè)量角的方法,此時(shí)就可以安排小組活動(dòng)。每組同學(xué)可以畫(huà)出大小、形狀不同的若干個(gè)三角形,分別量出三個(gè)內(nèi)角的度數(shù),并求出它們的和,填寫(xiě)在教材提供的表中。最后發(fā)現(xiàn),大小、形狀不同的三角形,每一個(gè)三角形內(nèi)角和都在180°左右。
三角形的內(nèi)角和是否正好等于180°呢?教材中安排了兩個(gè)活動(dòng):一是把三角形三個(gè)內(nèi)角撕下來(lái),再拼在一起,組成一個(gè)平角,因此三角形內(nèi)角和是180°。二是把三個(gè)內(nèi)角折疊在一起,發(fā)現(xiàn)也能組成一個(gè)平角。每個(gè)活動(dòng)都要使學(xué)生動(dòng)手試一試,加深對(duì)三角形內(nèi)角和的認(rèn)識(shí),體驗(yàn)三角形內(nèi)角和性質(zhì)的探索過(guò)程。
另外,教材還從兩個(gè)方面引導(dǎo)學(xué)生應(yīng)用三角形的內(nèi)角和:一是根據(jù)三角形中已知的兩個(gè)角的度數(shù),求另一個(gè)角的度數(shù);二是直角三角形里的兩個(gè)銳角和等于90°,鈍角三角形里的兩個(gè)銳角和小于90°。
學(xué)情分析
學(xué)生在前面的學(xué)習(xí)中已經(jīng)認(rèn)識(shí)了三角形的基本特征及分類(lèi),并且在四年級(jí)(上冊(cè))教材里已經(jīng)知道了兩塊三角尺上的每一個(gè)角的度數(shù),知道了平角是180°;學(xué)生通過(guò)前幾年的學(xué)習(xí),已具備了初步的動(dòng)手操作能力和主動(dòng)探究能力以及合作學(xué)習(xí)的習(xí)慣,所以在學(xué)生具備這些數(shù)學(xué)知識(shí)和能力的基礎(chǔ)上,來(lái)引導(dǎo)學(xué)生探索和發(fā)現(xiàn)三角形內(nèi)角和是180°這一性質(zhì)。
要讓學(xué)生明確一個(gè)三角形分成兩個(gè)小三角形后,每個(gè)三角形內(nèi)角和還是180°,兩個(gè)小三角形拼成一個(gè)大三角形,大三角形的內(nèi)角和也是180°。
教學(xué)目標(biāo)
1、知識(shí)目標(biāo):讓學(xué)生探索與發(fā)現(xiàn)三角形的內(nèi)角和是180°,已知三角形的兩個(gè)角度,會(huì)求出第三個(gè)角度。
2、能力目標(biāo):培養(yǎng)學(xué)生動(dòng)手操作和合作交流的能力,促進(jìn)掌握學(xué)習(xí)數(shù)學(xué)的方法。
3、情感目標(biāo):培養(yǎng)學(xué)生自主學(xué)習(xí)、積極探索的好習(xí)慣,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)應(yīng)用數(shù)學(xué)的興趣。
教學(xué)重點(diǎn)和難點(diǎn)
教學(xué)重點(diǎn):掌握三角形的內(nèi)角和是180°,會(huì)應(yīng)用三角形的內(nèi)角和解決實(shí)際問(wèn)題。
教學(xué)難點(diǎn):讓學(xué)生經(jīng)歷探索和發(fā)現(xiàn)三角形的內(nèi)角和是180°的過(guò)程。
教學(xué)過(guò)程:
(一)、激趣導(dǎo)入:
1、認(rèn)識(shí)三角形內(nèi)角
我們已經(jīng)認(rèn)識(shí)了什么是三角形,誰(shuí)能說(shuō)出三角形有什么特點(diǎn)?
(三角形是由三條線(xiàn)段圍成的圖形,三角形有三個(gè)角,…。)
請(qǐng)看屏幕(課件演示三條線(xiàn)段圍成三角形的過(guò)程)。
三條線(xiàn)段圍成三角形后,在三角形內(nèi)形成了三個(gè)角,(課件分別閃爍三個(gè)角及它的弧線(xiàn)),我們把三角形里面的這三個(gè)角分別叫做三角
形的內(nèi)角。(這里,有必要向?qū)W生直觀(guān)介紹“內(nèi)角”。)
2、設(shè)疑激趣
現(xiàn)在有兩個(gè)三角形朋友為了一件事正在爭(zhēng)論,我們來(lái)幫幫它們。(播放課件)
同學(xué)們,請(qǐng)你們給評(píng)評(píng)理:是這樣嗎?
現(xiàn)在出現(xiàn)了兩種不同的意見(jiàn),有的同學(xué)認(rèn)為大三角形的內(nèi)角和大,還有部分同學(xué)認(rèn)為兩個(gè)三角形的內(nèi)角和的度數(shù)都是一樣的。那么到底誰(shuí)說(shuō)得對(duì)呢?
這節(jié)課我們就一起來(lái)研究這個(gè)問(wèn)題。(板書(shū)課題:三角形的內(nèi)角和)
(二)、動(dòng)手操作,探究新知
1、探究特殊三角形的內(nèi)角和
師拿出兩個(gè)三角板,問(wèn):它們是什么三角形?
(直角三角形)
請(qǐng)大家拿出自己的兩個(gè)三角尺,在小組內(nèi)說(shuō)說(shuō)每一個(gè)三角尺上三個(gè)角的度數(shù),并求出這兩個(gè)直角三角形的內(nèi)角和。
(由于學(xué)生在四年級(jí)(上冊(cè))教材里已經(jīng)知道了兩塊三角尺上的每一個(gè)角的度數(shù),所以能夠很快求得每塊三角尺的3個(gè)角的和都是180°)
從剛才兩個(gè)三角形內(nèi)角和的計(jì)算中,你們發(fā)現(xiàn)了什么?
(這兩個(gè)三角形的內(nèi)角和都是180°)。
這兩個(gè)三角形都是直角三角形,并且是特殊的三角形。
2、探究一般三角形內(nèi)角和
。1).猜一猜。
猜一猜其它三角形的內(nèi)角和是多少度呢?(可能是180°)
(2).操作、驗(yàn)證一般三角形內(nèi)角和是180°。
所有三角形的內(nèi)角和究竟是不是180°,你能用什么辦法來(lái)證明,使別人相信呢?
(可以先量出每個(gè)內(nèi)角的.度數(shù),再加起來(lái)。)
測(cè)量計(jì)算,是嗎?那就請(qǐng)四人小組共同計(jì)算吧!
老師讓每個(gè)同學(xué)都準(zhǔn)備了直角三角形、銳角三角形和鈍角三角形三種不同的三角形,并量出了每個(gè)內(nèi)角的度數(shù),下面就請(qǐng)同學(xué)們?cè)谛〗M內(nèi)每種各選一個(gè)求出它們的內(nèi)角和,把結(jié)果填在表中:
(3)小組匯報(bào)結(jié)果。
請(qǐng)各小組匯報(bào)探究結(jié)果
提問(wèn):你們發(fā)現(xiàn)了什么?
小結(jié):通過(guò)測(cè)量計(jì)算我們發(fā)現(xiàn)每個(gè)三角形的三個(gè)內(nèi)角和都在180°左右。
3繼續(xù)探究
。1)動(dòng)手操作,驗(yàn)證猜測(cè)。
沒(méi)有得到統(tǒng)一的結(jié)果。這個(gè)辦法不能使人很信服,怎么辦?還有其它辦法嗎?請(qǐng)同學(xué)們動(dòng)腦筋想一想,能通過(guò)動(dòng)手操作來(lái)驗(yàn)證嗎?
。ㄏ刃〗M討論,再匯報(bào)方法)
大家的辦法都很好,請(qǐng)你們小組合作,動(dòng)手操作。
。2)學(xué)生操作,教師巡視指導(dǎo)。(3)全班交流匯報(bào)驗(yàn)證方法、結(jié)果。
學(xué)生放在投影儀上展示給大家看。(剪拼、撕拼、折拼)
我們可以得出一個(gè)怎樣的結(jié)論?(三角形的內(nèi)角和是180°)
引導(dǎo)學(xué)生通過(guò)剪拼、撕拼和折拼的方法發(fā)現(xiàn):各類(lèi)三角形的三個(gè)內(nèi)角都可以拼成一個(gè)平角,使學(xué)生證實(shí)三角形內(nèi)角和確實(shí)是180°,測(cè)量計(jì)算有誤差。
5、辨析概念,透徹理解。
。ǔ鍪疽粋(gè)大三角形)它的內(nèi)角和是多少度?
(出示一個(gè)很小的三角形)它的內(nèi)角和是多少度?
一塊三角尺的內(nèi)角和180°,兩塊同樣的三角尺拼成的一個(gè)大三角形的內(nèi)角和又是多少呢?(學(xué)生有的答360°,有的180°.)
把大三角形平均分成兩份。每個(gè)小三角形的內(nèi)角和是多少度?(生有的答90°,有的180°。)
這兩道題都有兩種答案,到底哪個(gè)對(duì)?為什么?
。▽W(xué)生個(gè)個(gè)臉上露出疑問(wèn)。)
大家可以在小組內(nèi)用三角尺拼一拼,也可以畫(huà)一畫(huà),互相討論。
經(jīng)過(guò)一翻激烈的討論探究后,學(xué)生發(fā)現(xiàn):三角形不論位置、大小、形狀如何,它的內(nèi)角和總是180°
。ㄈ┬〗Y(jié)
剛才同學(xué)們用很多方法證明了無(wú)論是什么樣的三角形內(nèi)角和都是180°,現(xiàn)在讓我們用自豪的、肯定的語(yǔ)氣讀出我們的發(fā)現(xiàn):“三角形的內(nèi)角和是180°”。
(四)、鞏固練習(xí),拓展應(yīng)用
下面,我們就根據(jù)三角形內(nèi)角和的知識(shí)來(lái)解決一些相關(guān)的數(shù)學(xué)問(wèn)題。(課件)
1、求三角形中一個(gè)未知角的度數(shù)。
。1)在三角形中,已知∠1=85°,∠2=65°,求∠3。
。2)在三角形中,已知∠1=98°,∠2=49°,求∠3。
2、判斷
。1)一個(gè)三角形的三個(gè)內(nèi)角度數(shù)是:90°、75°、25°。()
。2)一個(gè)三角形至少有兩個(gè)角是銳角。()
(3)鈍角三角形的內(nèi)角和比銳角三角形的內(nèi)角和大。()
。4)直角三角形的兩個(gè)銳角和等于90°。()
3、解決生活實(shí)際問(wèn)題。
。1)爸爸給小紅買(mǎi)了一個(gè)等腰三角形的風(fēng)箏,它的一個(gè)底角是70°,它的頂角是多少度?
。2)交通警示牌“讓”為等邊三角形,求其中一個(gè)角的度數(shù)。
4、拓展練習(xí)。
利用三角形內(nèi)角和是180°,求出下面四邊形、六邊形的內(nèi)角和?(課件)
小組的同學(xué)討論一下,看誰(shuí)能找到最佳方法。
學(xué)生匯報(bào),在圖中畫(huà)上虛線(xiàn),教師課件演示。
請(qǐng)同學(xué)們自己在練習(xí)本上計(jì)算。
(四)、課堂總結(jié)
通過(guò)這節(jié)課的學(xué)習(xí),你有哪些收獲?
三角形內(nèi)角和教案11
三角形的有關(guān)知識(shí)是“空間與圖形”中最為核心、最為重要的內(nèi)容,它不僅是最基本的直線(xiàn)型平面圖形,而且?guī)缀跏茄芯克衅渌鼒D形的工具和基礎(chǔ)。而三角形內(nèi)角和定理又是三角形中最為基礎(chǔ)的知識(shí),也是學(xué)生最為熟悉且能與小學(xué)、中學(xué)知識(shí)相關(guān)聯(lián)的知識(shí),看似簡(jiǎn)單,但如果處理不好,會(huì)導(dǎo)致學(xué)生有厭煩心理,為此,本節(jié)課的設(shè)計(jì)力圖實(shí)現(xiàn)以下特點(diǎn):
。1)通過(guò)折紙與剪紙等操作讓學(xué)生獲得直接經(jīng)驗(yàn),然后從學(xué)生的直接經(jīng)驗(yàn)出發(fā),逐步轉(zhuǎn)到符號(hào)化處理,最后達(dá)到推理論證的要求。
。2)充分展示學(xué)生的個(gè)性,體現(xiàn)“學(xué)生是學(xué)習(xí)的主人”這一主題。
。3)添加輔助線(xiàn)是教學(xué)中的一個(gè)難點(diǎn),如何添加輔助線(xiàn)則應(yīng)允許學(xué)生展開(kāi)思考并爭(zhēng)論,展示學(xué)生的思維
過(guò)程,然后在老師的引導(dǎo)下達(dá)成共識(shí)。
1、三角形的內(nèi)角和定理是從“數(shù)量關(guān)系”來(lái)揭示三角形內(nèi)角之間的關(guān)系的,這個(gè)定理是任意三角形的一個(gè)重要性質(zhì),它是學(xué)習(xí)以后知識(shí)的基礎(chǔ),并且是計(jì)算角的度數(shù)的方法之一。在解決四邊形和多邊形的內(nèi)角和時(shí)都將轉(zhuǎn)化為三角形的內(nèi)角和來(lái)解決。其中輔助線(xiàn)的作法、把新知識(shí)轉(zhuǎn)化為舊知識(shí)、用代數(shù)方法解決幾何問(wèn)題,為以后的學(xué)習(xí)打下良好的基礎(chǔ),三角形內(nèi)角和定理在理論和實(shí)踐中有廣泛的`應(yīng)用。
2、三角形內(nèi)角和定理的內(nèi)容,學(xué)生在小學(xué)已經(jīng)熟悉,但在小學(xué)是通過(guò)實(shí)驗(yàn)得出的,要向?qū)W生說(shuō)明證明的必要性,同時(shí)說(shuō)明今后在幾何里,常常用這種方法得到新知識(shí),而定理的證明需要添輔助線(xiàn),讓學(xué)生明白添輔助線(xiàn)是解決數(shù)學(xué)問(wèn)題(尤其是幾何問(wèn)題)的重要思想方法,它同代數(shù)中設(shè)末知數(shù)是同一思想。
3、學(xué)生在小學(xué)里已知三角形的內(nèi)角和是180°,前面又學(xué)習(xí)了三角形的有關(guān)概念,平角定義和平行線(xiàn)的性質(zhì),而且也滲透了三角形的內(nèi)角和是180°的證明,它的證明借助了平角定義,平行線(xiàn)的性質(zhì)。用輔助線(xiàn)將三角形的三個(gè)內(nèi)角巧妙地轉(zhuǎn)化為一個(gè)平角或兩平行線(xiàn)間的同旁?xún)?nèi)角,為定理的證明提供了必備條件。盡管前面學(xué)生接觸過(guò)推理論證的知識(shí),但并末真正去論證過(guò),特別是在論證的格式上,沒(méi)有經(jīng)過(guò)很好的鍛煉。因此定理的證明應(yīng)是本節(jié)引導(dǎo)和探索的重點(diǎn)。輔助線(xiàn)的作法是學(xué)生在幾何證明過(guò)程中第一次接觸,只要教師設(shè)置恰當(dāng)?shù)膯?wèn)題情境,學(xué)生再由實(shí)驗(yàn)操作、觀(guān)察、抽象出幾何圖形,用自主探索的方式是可發(fā)完成的,并且這樣的過(guò)程可以更好地發(fā)展他們的創(chuàng)造能力和實(shí)驗(yàn)?zāi)芰Α?/p>
在小學(xué)已學(xué)過(guò)三角形的內(nèi)角的有關(guān)知識(shí),知道三角形的內(nèi)角和為1800,但是為什么是1800并沒(méi)有進(jìn)行研究,因此本節(jié)是在學(xué)生前幾學(xué)段學(xué)過(guò)三角形、線(xiàn)段、角等,初步了解了一些簡(jiǎn)單幾何體和平面圖形及特征會(huì)進(jìn)行簡(jiǎn)單說(shuō)理后,對(duì)“三角形的內(nèi)角和定理”進(jìn)行證明及簡(jiǎn)單應(yīng)用。在證明過(guò)程中,通過(guò)一題多解,初步體會(huì)思維的多向性,引導(dǎo)學(xué)生的個(gè)性化發(fā)展,通過(guò)本節(jié)學(xué)習(xí)可以進(jìn)一步豐富對(duì)圖形的認(rèn)識(shí)和感受。
七年級(jí)學(xué)生年齡較小,思維正處在具體形象思維向抽象邏輯思維轉(zhuǎn)變的階段,也是由代數(shù)運(yùn)算向幾何推理過(guò)渡的較好時(shí)期,通過(guò)前面的學(xué)習(xí),學(xué)生已具備一些分析問(wèn)題、解決問(wèn)題的能力,這樣可以讓學(xué)生和諧地融入到探究性學(xué)習(xí)的氛圍中。剛開(kāi)始上課,我讓學(xué)生回顧了平角的概念,平行線(xiàn)的性質(zhì),為證明內(nèi)角和墊定基礎(chǔ)。然后通過(guò)幾何畫(huà)板演示一組在小學(xué)已經(jīng)學(xué)過(guò)的把三角形的三個(gè)角拼成一個(gè)平角的方法,通過(guò)設(shè)問(wèn):從剛才拼角的過(guò)程中,你能根據(jù)我們?cè)谇懊嫠鶎W(xué)的知識(shí)說(shuō)出證明:“三角形內(nèi)角和等于180°”這個(gè)結(jié)論的正確方法嗎?通過(guò)讓學(xué)生各抒已見(jiàn),暢所欲言,鼓勵(lì)學(xué)生傾聽(tīng)他人的方法,從中獲益,增加了學(xué)生的探究精神,有意識(shí)地培養(yǎng)學(xué)生的說(shuō)理能力,邏輯推理能力,增強(qiáng)了語(yǔ)言表達(dá)能力,培養(yǎng)學(xué)生的一題多思,一題多解的創(chuàng)新精神,讓學(xué)生體會(huì)數(shù)學(xué)輔助線(xiàn)的橋梁作用,在潛移默化中滲透了初中階段一個(gè)重要數(shù)學(xué)思想―――轉(zhuǎn)化思想,為學(xué)好初中數(shù)學(xué)打下堅(jiān)實(shí)的基礎(chǔ)。
俗話(huà)說(shuō)的好:“熟能生巧”。數(shù)學(xué)離不開(kāi)練習(xí),要掌握知識(shí),形成技能技巧,一定要通過(guò)練習(xí)。養(yǎng)成良好的思維品質(zhì)也要通過(guò)一定的思考練習(xí),課程標(biāo)準(zhǔn)提倡練習(xí)的有效性。對(duì)此,我非常注意將數(shù)學(xué)的思考融入不同層次的練習(xí)之中,很好的發(fā)揮練習(xí)的作用。例如,我設(shè)置的一層練習(xí),基本上都是給出或者間接給出一個(gè)三角形的兩個(gè)角度,學(xué)生求第三個(gè)角,從中培養(yǎng)學(xué)生應(yīng)用意識(shí)和解決問(wèn)題的能力。這些練習(xí)設(shè)計(jì)目的明確,針對(duì)性強(qiáng),使學(xué)生對(duì)定理得到了鞏固。
通過(guò)二層練習(xí),鞏固三角形內(nèi)角和知識(shí),培養(yǎng)學(xué)生思維的廣闊性,通過(guò)討論一個(gè)三角形中最多有幾個(gè)直角、鈍角,至少有幾個(gè)銳角,為學(xué)生提供充分從事數(shù)學(xué)活動(dòng)的時(shí)間、空間,讓學(xué)生在自主探索、合作交流的氛圍中,有機(jī)會(huì)分享同學(xué)的想法,培養(yǎng)了學(xué)生之間良好的人際關(guān)系,拓展了三角形內(nèi)角和是180°的知識(shí)外延。
三層練習(xí)難度上與一、二層練習(xí)有了大幅度的提高,為實(shí)現(xiàn)分層教學(xué),滿(mǎn)足成績(jī)較好的同學(xué)的需求,有事可作,為高效課堂提供了平臺(tái)。
最后,在堂小結(jié)方面,采用用先讓學(xué)生歸納補(bǔ)充,然后教師再補(bǔ)充的方式進(jìn)行:⑴這節(jié)課我們學(xué)了什么知識(shí)?⑵你有什么收獲?充分發(fā)揮學(xué)生的主體意識(shí),培養(yǎng)學(xué)生的語(yǔ)言概括能力。
總之,本節(jié)課教學(xué)活動(dòng)中我力求充分體現(xiàn)以下特點(diǎn):以學(xué)生發(fā)展為本,以學(xué)生為主體,思維為主線(xiàn)的思想;充分關(guān)注學(xué)生的自主探究與合作交流;練習(xí)體現(xiàn)了層次性,知識(shí)技能得于落實(shí)和發(fā)展。教師是學(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者,而非知識(shí)的灌輸者,因而對(duì)一個(gè)問(wèn)題的解決不是要教師將現(xiàn)成的方法傳授給學(xué)生,而是教給學(xué)生解決問(wèn)題的策略,給學(xué)生一把在知識(shí)的海洋中行舟的槳,讓學(xué)生在積極思考,大膽嘗試,主動(dòng)探索中,獲取成功并體驗(yàn)成功的喜悅。
三角形內(nèi)角和教案12
【教學(xué)內(nèi)容】:人教版第八冊(cè)第85頁(yè)例5及“做一做”和練習(xí)十四的第9、10、12題。
【課程標(biāo)準(zhǔn)】:認(rèn)識(shí)三角形,通過(guò)觀(guān)察、操作、了解三角形內(nèi)角和是180度。
【學(xué)情分析】:
學(xué)生已經(jīng)掌握了三角形的概念、分類(lèi),熟悉了鈍角、銳角、平角這些角的知識(shí)。對(duì)于三角形的內(nèi)角和是多少度,學(xué)生是不陌生的,因?yàn)閷W(xué)生有以前認(rèn)識(shí)角、用量角器量三角板三個(gè)角的度數(shù)以及三角形的分類(lèi)的基礎(chǔ),學(xué)生也有提前預(yù)習(xí)的習(xí)慣,很多孩子都能回答出三角形的內(nèi)角和是180度,但是他們卻不知道怎樣才能得出三角形的內(nèi)角和是180度。另外,經(jīng)過(guò)三年多的學(xué)習(xí),學(xué)生們已具備了初步的動(dòng)手操作能力、主動(dòng)探究能力以及小組合作的能力。
【學(xué)習(xí)目標(biāo)】:
1、結(jié)合具體圖形能描述出三角形的內(nèi)角、內(nèi)角和的含義。
2、在教師的引導(dǎo)下,通過(guò)猜測(cè)和計(jì)算能說(shuō)出三角形的內(nèi)角和是180°。
3、在小組合作交流中,通過(guò)動(dòng)手操作,實(shí)驗(yàn)、驗(yàn)證、總結(jié)三角形的內(nèi)角和是180°,同時(shí)發(fā)展動(dòng)手動(dòng)腦及分析推理能力。
4、能運(yùn)用三角形的內(nèi)角和是180°這一規(guī)律,求三角形中未知角的度數(shù)。
【評(píng)價(jià)任務(wù)設(shè)計(jì)】:
1、利用孩子已有經(jīng)驗(yàn),通過(guò)教師的提問(wèn)和引導(dǎo)以及學(xué)生的直觀(guān)觀(guān)察,說(shuō)出三角形的內(nèi)角、內(nèi)角和的含義。達(dá)成目標(biāo)1。
2、在教師的引導(dǎo)下,以游戲的形式學(xué)生通過(guò)猜測(cè)三角形的內(nèi)角和是多少度,然后通過(guò)計(jì)算說(shuō)出三角形的內(nèi)角和是180°的結(jié)論。達(dá)成目標(biāo)2。
3、在小組合作交流中,通折一折、拼一拼和擺一擺的動(dòng)手操作、實(shí)驗(yàn)、驗(yàn)證并歸納總結(jié)出三角形的內(nèi)角和是180°。達(dá)成目標(biāo)3。
4、能運(yùn)用三角形的內(nèi)角和是180°這一規(guī)律,求三角形中未知角的度數(shù)。通過(guò)“做一做”和習(xí)題第9、10、12題達(dá)成目標(biāo)4和目標(biāo)3。
【重難點(diǎn)】
教學(xué)重點(diǎn):探索和發(fā)現(xiàn)三角形的內(nèi)角和是180°。
教學(xué)難點(diǎn): 充分發(fā)揮學(xué)生的主體作用,自主探索和發(fā)現(xiàn)三角形的內(nèi)角和是180°
【教學(xué)過(guò)程】
一、復(fù)習(xí)準(zhǔn)備。
1、三角形按角的不同可以分成哪幾類(lèi)?
2、一個(gè)平角是多少度?1個(gè)平角等于幾個(gè)直角??jī)蓚(gè)三角板上各個(gè)角的度數(shù)?
二、探究新知
。ㄒ唬﹦(chuàng)設(shè)情境,生成問(wèn)題,認(rèn)識(shí)三角形的內(nèi)角及內(nèi)角和
(播放課件)在圖形王國(guó)中,有一天,三角形家族里為“三角形內(nèi)角和的大小”爆發(fā)了一場(chǎng)激烈的爭(zhēng)吵。鈍角三角形大聲叫著:“我的鈍角大,我的內(nèi)角和一定比你們的內(nèi)角和大。”銳角三角形也不示弱:“你雖然有一個(gè)鈍角,可其它兩個(gè)角都很小。但是我的三個(gè)角都不是很小。我的內(nèi)角和比你大”。直角三角形說(shuō):“別爭(zhēng)了,三角形的內(nèi)角和是180°,我們的內(nèi)角和是一樣大的!
師:動(dòng)畫(huà)片看完了,請(qǐng)大家想一想,什么是三角形的內(nèi)角和?
師引導(dǎo)學(xué)生說(shuō)出三角形三個(gè)內(nèi)角的度數(shù)和叫做三角形的內(nèi)角和。
多媒體展示:三條線(xiàn)段在圍成三角形后,在三角形內(nèi)形成了三個(gè)角(課件閃爍三個(gè)角的弧線(xiàn)),我們把三角形內(nèi)的這三個(gè)角,分別叫做三角形的內(nèi)角(板書(shū):內(nèi)角),這三個(gè)內(nèi)角的度數(shù)的和就叫做三角形的內(nèi)角和。
。達(dá)成目標(biāo)1:利用多媒體播放動(dòng)畫(huà)和孩子已有的經(jīng)驗(yàn),通過(guò)教師的提問(wèn)和引導(dǎo),學(xué)生說(shuō)出什么叫三角形的內(nèi)角及內(nèi)角和達(dá)成目標(biāo)1。多媒體創(chuàng)設(shè)的情景也為目標(biāo)二打好鋪墊)
。ǘ、引導(dǎo)猜測(cè)三角形的內(nèi)角和是180度
師:在課件展示的直角三角形、鈍角三角形、銳角三角形的對(duì)話(huà)中,你贊同誰(shuí)的觀(guān)點(diǎn)?
預(yù)設(shè):學(xué)生回答直角三角形。
師:你為什么這么認(rèn)為呢?
生:我是想三角板上三個(gè)角的度數(shù)是90度、45度、45度加起來(lái)是180度,90度、60度、30度加起來(lái)也是180度。
(達(dá)成目標(biāo)2:激發(fā)引導(dǎo)學(xué)生運(yùn)用已有經(jīng)驗(yàn)猜三角形的內(nèi)角和而不是盲目猜,激起學(xué)生的疑問(wèn)和好奇心,這樣在教師的引導(dǎo)下,學(xué)生通過(guò)猜測(cè)三角形的內(nèi)角和是多少度,然后通過(guò)計(jì)算說(shuō)出三角形的內(nèi)角和是180°的結(jié)論。)
。ㄈ、驗(yàn)證三角形的內(nèi)角和是180度
1.確定研究范圍
師:研究三角形的內(nèi)角和,是不是應(yīng)該包括所有的三角形?只研究這一個(gè)行不行?(不行)那就隨便畫(huà),挨個(gè)研究吧。(學(xué)生反對(duì))那該怎樣去驗(yàn)證呢?請(qǐng)你們想個(gè)辦法吧!
師:分類(lèi)驗(yàn)證是科學(xué)驗(yàn)證的一種好方法,下面我們就用分類(lèi)驗(yàn)證的方法來(lái)驗(yàn)證一下,看看三角形的內(nèi)角和是不是180°?
2.操作驗(yàn)證
教師讓每個(gè)學(xué)習(xí)小組拿出課前制作的各種各樣的三角形,先找到三個(gè)內(nèi)角,在每個(gè)內(nèi)角標(biāo)上序號(hào)1、2、3。然后請(qǐng)任意用一個(gè)三角形,想辦法驗(yàn)證我們的猜想。如果有困難,可以啟用老師提供的“智慧錦囊”或者尋求同學(xué)的幫助。
智慧錦囊:
。1)要知道三個(gè)內(nèi)角的.和,只要知道三個(gè)角分別是多少度就可以了,你覺(jué)得哪個(gè)工具可以測(cè)出角的度數(shù)?試一試。
。2)180°的角是個(gè)特殊的角,它是個(gè)什么角?你能想辦法將這三個(gè)內(nèi)角轉(zhuǎn)化成這樣的角嗎?
3.匯報(bào)交流
師:誰(shuí)來(lái)匯報(bào)你的驗(yàn)證結(jié)果?
。1)測(cè)算法
師小結(jié):用量的方法驗(yàn)證既然有誤差、不準(zhǔn),結(jié)論就難以讓人信服,那有沒(méi)有辦法更好地驗(yàn)證我們的猜測(cè)呢?誰(shuí)還有別的方法?
。2)剪拼法
(3)折拼法
師小結(jié):用拼和折的方法都能將三角形的三個(gè)內(nèi)角轉(zhuǎn)化成一個(gè)平角,從而借助我們學(xué)過(guò)的平角知識(shí)證明三角形的內(nèi)角和確實(shí)是180°,你們真會(huì)動(dòng)腦筋!
。4)推算法
、侔岩粋(gè)長(zhǎng)方形沿對(duì)角線(xiàn)分成兩個(gè)完全一樣的直角三角形。因?yàn)殚L(zhǎng)方形的內(nèi)角和是360°,所以一個(gè)直角三角形的內(nèi)角和等于180°。(課件演示過(guò)程)
師:直角三角形的內(nèi)角和已經(jīng)證明了是180°,現(xiàn)在我們只要能證明:銳角三角形和鈍角三角形的內(nèi)角和也是180°就可以了。
課件演示
、谝粋(gè)銳角三角形,從頂點(diǎn)往下畫(huà)一條垂線(xiàn),將三角形分為兩個(gè)直角三角形,因?yàn)槲覀円呀?jīng)知道直角三角形的內(nèi)角和是180°,所以?xún)蓚(gè)直角三角形的度數(shù)和就是360°,減去兩個(gè)直角的和180°,就是要證明的三角形內(nèi)角和,肯定是180°。
4.總結(jié)提煉
師:孩子們,剛才我們通過(guò)“量——拼——折——推”的方法分類(lèi)驗(yàn)證了三角形的內(nèi)角和是( )度?
現(xiàn)在可以下結(jié)論了嗎?
(板書(shū):三角形三個(gè)內(nèi)角和等于180°。)
師:那在“三角形的爭(zhēng)吵中”誰(shuí)是對(duì)的?
(達(dá)成目標(biāo)3。此環(huán)節(jié)讓學(xué)生通過(guò)“量——拼——折——推”的方法分類(lèi)驗(yàn)證了三角形的內(nèi)角和是180度。此環(huán)節(jié)充分體現(xiàn)了學(xué)生學(xué)習(xí)的主動(dòng)性。)
。ㄋ模├萌切蝺(nèi)角和是180解決問(wèn)題
1、看圖,求出未知角的度數(shù)。
2、書(shū)本85頁(yè)“做一做”
在一個(gè)三角形中,∠1=140。,∠3=25。,求∠2的度數(shù)。
(達(dá)成目標(biāo)3和目標(biāo)4:能運(yùn)用三角形的內(nèi)角和是180°這一規(guī)律,求三角形中未知角的度數(shù)。通過(guò)“做一做”達(dá)成目標(biāo)3和目標(biāo)4.)
三、目標(biāo)達(dá)成檢測(cè)方案:
1、求出三角形各個(gè)角的度數(shù)。
2、埃及金字塔建于4500年前的埃及古王朝時(shí)期,它是用巨大石塊修砌成的方錐形建筑物,外形像中文“金”字,故名“金字塔”。金字塔大小、高矮各異,外表有四個(gè)側(cè)面,每個(gè)側(cè)面都是等腰三角形。人們量得這個(gè)三角形的一個(gè)底角是64度。
四、課堂小結(jié),提升認(rèn)識(shí)
同學(xué)們,這節(jié)課你有哪些收獲?我們是怎樣得到“三角形內(nèi)角和等于180度”這個(gè)結(jié)論的?
師:是啊,今天咱們不但知道了三角形的內(nèi)角和是180°,更重要的是我們經(jīng)歷了探究三角形內(nèi)角和的驗(yàn)證方法。咱們從猜想出發(fā),經(jīng)過(guò)驗(yàn)證(用量、拼、折、推等)得到了結(jié)論并利用結(jié)論解決了一些問(wèn)題。孩子們,其實(shí)我們?cè)诓恢挥X(jué)中已經(jīng)走了數(shù)學(xué)家的探究歷程……希望同學(xué)們?cè)诮窈蟮膶W(xué)習(xí)中大膽應(yīng)用,勇于創(chuàng)新,做最棒的自己
三角形內(nèi)角和教案13
教學(xué)目標(biāo)
通過(guò)猜想、驗(yàn)證,了解三角形的內(nèi)角和是180度。在學(xué)習(xí)的過(guò)程中進(jìn)一步激發(fā)學(xué)生探索數(shù)學(xué)規(guī)律的興趣,初步感知計(jì)算多邊形內(nèi)角和的公式。
教學(xué)重難點(diǎn)
三角形的內(nèi)角和
課前準(zhǔn)備
電腦課件、學(xué)具卡片
教學(xué)活動(dòng)
一、計(jì)算三角尺三個(gè)內(nèi)角的和。
出示三角尺中的一個(gè),提問(wèn):誰(shuí)來(lái)說(shuō)說(shuō)三角尺上的三個(gè)角分別是多少度?
引導(dǎo)學(xué)生說(shuō)出90度、60度、30度。
出示另一個(gè)三角尺,引導(dǎo)學(xué)生分別說(shuō)出三個(gè)角的度數(shù):90度、45度、45度。
提問(wèn):請(qǐng)同學(xué)們?nèi)芜x一個(gè)三角尺,算出他們?nèi)齻(gè)角一共多少度?
學(xué)生計(jì)算后指名回答。
師:三角尺三個(gè)角的和是180度。
二、自主探索,解決問(wèn)題
提問(wèn):是不是任一個(gè)三角形三個(gè)角的和都是180度呢?請(qǐng)同學(xué)們?cè)谧詡浔旧?/p>
任畫(huà)一個(gè)三角形,量出它們?nèi)齻(gè)角分別是多少度,再求出它們的和,然后小組內(nèi)交流。
學(xué)生小組活動(dòng),教師了解學(xué)生情況,個(gè)別同學(xué)加以輔導(dǎo)。
全班交流:讓學(xué)生分別說(shuō)出三個(gè)角的度數(shù)以及它們的'和。
提問(wèn):你發(fā)現(xiàn)了什么?
。喝魏我粋(gè)三角形三個(gè)角的和都是180度。利用三角形的這一性質(zhì),我們可以解決許多問(wèn)題。
三、試一試
要求學(xué)生先計(jì)算,再用量角器量,最后比較結(jié)果是否相同?讓學(xué)生說(shuō)說(shuō)計(jì)算的方法。
教師說(shuō)明:即使結(jié)果不完全一樣,是因?yàn)闇y(cè)量的結(jié)果存在誤差,我們還是以
計(jì)算的結(jié)果為準(zhǔn)。
四、鞏固提高
完成想想做做的題目。
第1題
學(xué)生獨(dú)立計(jì)算,交流算法。要求學(xué)生用量角器量出結(jié)果,和計(jì)算的結(jié)果想比較。
第2題
指導(dǎo)學(xué)生看圖,弄清拼成的三角形的三個(gè)內(nèi)角指的是哪三個(gè)角。計(jì)算三角形三個(gè)角的內(nèi)角和,幫助學(xué)生進(jìn)一步理解:三角形三個(gè)內(nèi)角的和是180度。
第3題
通過(guò)操作、計(jì)算,使學(xué)生認(rèn)識(shí)到:不管三角形的大小怎樣變化,它的內(nèi)角和是不會(huì)變化的。
第4、5、6
引導(dǎo)學(xué)生運(yùn)用三角形的分類(lèi)及三角形內(nèi)角和的有關(guān)知識(shí)解決有關(guān)問(wèn)題,重點(diǎn)培養(yǎng)學(xué)生靈活運(yùn)用知識(shí)解決問(wèn)題的能力。
三角形內(nèi)角和教案14
教學(xué)目標(biāo)
1.使學(xué)生經(jīng)歷自主探索三角形的內(nèi)角和的過(guò)程,知道三角形的內(nèi)角和是180°,能運(yùn)用這一規(guī)律解決一些簡(jiǎn)單的問(wèn)題。
2.使學(xué)生在觀(guān)察、操作、分析、猜想、驗(yàn)證、合作、交流等具體活動(dòng)中,提高動(dòng)手操作能力和數(shù)學(xué)思考能力。
3.使學(xué)生在參與數(shù)學(xué)學(xué)習(xí)活動(dòng)的過(guò)程中,獲得成功的體驗(yàn),感受探索數(shù)學(xué)規(guī)律的樂(lè)趣,產(chǎn)生喜歡數(shù)學(xué)的積極情感,培養(yǎng)積極與他人合作的意識(shí)。
課前準(zhǔn)備
多媒體課件,任意三角形,剪刀,紙,三角板,量角器等。
教學(xué)過(guò)程
一、創(chuàng)設(shè)情境,導(dǎo)入新課
師:我們已經(jīng)學(xué)習(xí)了三角形的分類(lèi),你知道三角形按角分可以分為哪幾類(lèi)嗎?
生:三角形按角分可以分為鈍角三角形、直角三角形、銳角三角形。
師:(出示一副三角尺)這是一副三角尺,它們都是什么形狀?每塊三角尺的三個(gè)角分別是多少度?
生:它們都是直角三角形,(拿起等腰的三角尺)這塊三角尺三個(gè)角的度數(shù)分別是45°、45°和90°;另一塊三角尺的三個(gè)角分別是30°、60°、90°。
教師指三角尺的角:這三個(gè)角都叫做三角形的內(nèi)角。(板書(shū):內(nèi)角)一個(gè)三角形有幾個(gè)內(nèi)角?
生:一個(gè)三角形有三個(gè)內(nèi)角。
師:這兩個(gè)三角形三個(gè)內(nèi)角的和分別是多少度?
生:都是180°。
師:一個(gè)三角形中三個(gè)內(nèi)角的和稱(chēng)為三角形的內(nèi)角和。今天我們就來(lái)研究三角形的內(nèi)角和。(板書(shū)課題)
二、提出問(wèn)題,猜想驗(yàn)證
1.猜想。
師:請(qǐng)同學(xué)拿出兩塊同樣的三角尺,把這兩塊同樣的三角尺拼成一個(gè)大的三角形,看一看拼成的三角形的內(nèi)角和是多少度?
學(xué)生活動(dòng)后,反饋:你拼成的三角形是什么樣子的?它的內(nèi)角和是多少度?
生1:我拼成的三角形每個(gè)內(nèi)角都是60°,它的內(nèi)角和是180°。
生2:我拼成的三角形,三個(gè)內(nèi)角分別是30°、30°、120°,它的內(nèi)角和也是180°。
生3:我拼成的三角形,三個(gè)內(nèi)角分別是45°、45°、90°,它的內(nèi)角和也是180°。
師:從這一現(xiàn)象中,你能猜想一下,三角形的內(nèi)角和可能存在的規(guī)律嗎?
生1:我猜想三角形的內(nèi)角和是180°。
生2:我猜想鈍角三角形的內(nèi)角和比180°大。
生3:不對(duì)。我拼的這個(gè)三角形(用兩塊三角尺拼成一個(gè)三個(gè)內(nèi)角是30°、30°、120°的三角形)就是一個(gè)鈍角三角形,但它的內(nèi)角和也是180°。
師:還有不同的猜想嗎?
師:研究數(shù)學(xué)問(wèn)題就要像這樣,既能大膽地猜想,又敢于對(duì)結(jié)論提出質(zhì)疑。有人對(duì)“三角形的內(nèi)角和等于180°”這一猜想提出質(zhì)疑嗎?你能說(shuō)清楚三角形的內(nèi)角和等于180°的理由嗎?(沒(méi)有人舉手)是的,由猜想得出的結(jié)論往往是不可靠的,需要我們進(jìn)一步去驗(yàn)證。
2.驗(yàn)證。
師:怎樣驗(yàn)證“三角形的內(nèi)角和等于180°”呢?請(qǐng)同學(xué)們先在小組里討論討論,可以怎樣進(jìn)行驗(yàn)證?再選擇合適的材料,以小組為單位進(jìn)行驗(yàn)證。比一比,哪個(gè)組驗(yàn)證的方法多,有創(chuàng)意。
學(xué)生分小組活動(dòng),教師參與學(xué)生的活動(dòng),并給予必要的指導(dǎo)。
師:哪個(gè)小組先來(lái)匯報(bào),你們是怎樣驗(yàn)證的?
小組1:我們小組每個(gè)人畫(huà)了一個(gè)三角形,用量角器量,量出各個(gè)三角形的內(nèi)角度數(shù),再加一加,并列出了一張表格,(在實(shí)物投影儀上展示下面的表格)請(qǐng)大家來(lái)看一看。通過(guò)計(jì)算,我們認(rèn)為三角形內(nèi)角和是180°這一結(jié)論是正確的。
小組2:我們小組把三角形的三個(gè)內(nèi)角拼在一起,(邊說(shuō)邊演示)我們發(fā)現(xiàn)三角形的三個(gè)內(nèi)角正好拼成了一個(gè)平角,所以我們也認(rèn)為三角形內(nèi)角和是180°這一結(jié)論是對(duì)的。
小組3:我們小組采用了折一折的方法。我們將正方形紙沿對(duì)角線(xiàn)對(duì)折,這樣,就折成了兩個(gè)大小一樣的三角形。因?yàn)檎叫蔚乃膫(gè)直角的`和是360°,所以三角形的內(nèi)角和就是它的一半,是180°。
小組4:我們小組采用的是拼一拼的方法。我們將兩個(gè)完全一樣的三角形拼成了一個(gè)長(zhǎng)方形,長(zhǎng)方形的內(nèi)角和360°,所以三角形的內(nèi)角和就是它的一半,是180°。
3.歸納。
師:通過(guò)剛才的活動(dòng),我們得出了什么結(jié)論?
生:三角形的內(nèi)角和等于180°。
師:剛才,我們是怎樣得出“三角形內(nèi)角和等于180°”這個(gè)結(jié)論的?
生:我們是用先猜想再驗(yàn)證的方法得出結(jié)論的。
師:是的,“猜想—驗(yàn)證”是一種很有效的科學(xué)研究方法。有很多重大的科學(xué)發(fā)現(xiàn),就是通過(guò)這一方法得到的。
4.教學(xué)“試一試”。
師:知道了三角形的內(nèi)角和等于180°,就可以運(yùn)用它去解決一些問(wèn)題。我們來(lái)“試一試”。(出示“試一試”的題目)你能根據(jù)∠1和∠2的度數(shù),算出∠3的度數(shù)嗎?自己先算一算,再用量角器量一量,看與算出的結(jié)果是否相同。
學(xué)生匯報(bào)結(jié)果。
三、靈活運(yùn)用,鞏固練習(xí)
1.出示“想想做做”第1題。
師:你能算出下面每個(gè)三角形中未知角的度數(shù)嗎?獨(dú)立完成。
學(xué)生活動(dòng)后,集體反饋。
2.出示下圖。
師:用今天學(xué)習(xí)的結(jié)論還能解決生活中的一些問(wèn)題呢。這里的三張紙片都被撕去了一個(gè)角,你能猜一猜,它們?cè)瓉?lái)是什么三角形嗎?
生1:第一個(gè)三角形是銳角三角形,因?yàn)橐阎膬蓚(gè)角的和大于90°了。
生2:第二個(gè)三角形是直角三角形,因?yàn)閮蓚(gè)已知的角的和等于90°。
生3:第三個(gè)三角形是鈍角三角形,因?yàn)橐阎膬蓚(gè)角的和只有40°,被撕去的那個(gè)角一定是鈍角。
師:從這幾道題中,還知道了什么?
生:在一個(gè)三角形中最多有一個(gè)直角或一個(gè)鈍角。
師:大家的判斷真是有理有據(jù),算一算,每個(gè)三角形中被去撕去的角是多少度。
學(xué)生計(jì)算后校對(duì)。
3.出示“想想做做”第4題。
師:你能算出下面三角形中∠3的度數(shù)嗎?
學(xué)生練習(xí)后,集體反饋。
4.出示“想想做做”第5題。
師:在一個(gè)直角三角形中,已知一個(gè)銳角的度數(shù),你能算出另一個(gè)銳角的度數(shù)嗎?先看第一個(gè)直角三角形,一個(gè)銳角是35°,另一個(gè)銳角是多少度?你是怎樣算的?
生1:因?yàn)橹苯侨切沃杏幸粋(gè)直角,所以,用180° - 90° - 35° = 55°,∠2等于55°。
生2:因?yàn)橹苯侨切沃杏幸粋(gè)角是90°,所以,兩個(gè)銳角的和一定是90°?梢灾苯佑90°減去∠1的度數(shù),得到∠2等于55°。
師:第二個(gè)直角三角形中,∠2等于多少度?
(略)
四、 總結(jié)評(píng)價(jià),延伸拓展
師:今天你的收獲是什么?你還有什么不明白的地方嗎?你還想學(xué)習(xí)三角形的什么知識(shí)?
學(xué)生口答。
師:學(xué)習(xí)了今天的知識(shí),我們還能利用它去研究一些更復(fù)雜的問(wèn)題呢!有信心嗎?(有)我們來(lái)看這樣的問(wèn)題。(出示第34頁(yè)思考題)這個(gè)問(wèn)題請(qǐng)同學(xué)們課后去研究,如果誰(shuí)發(fā)現(xiàn)了其中的規(guī)律,就把你發(fā)現(xiàn)的規(guī)律寫(xiě)在黑板上,與大家共同分享。
三角形內(nèi)角和教案15
一、學(xué)生知識(shí)狀況分析
學(xué)生技能基礎(chǔ):學(xué)生在以前的幾何學(xué)習(xí)中,已經(jīng)學(xué)習(xí)過(guò)平行線(xiàn)的判定定理與平行線(xiàn)的性質(zhì)定理以及它們的嚴(yán)格證明,也熟悉三角形內(nèi)角和定理的內(nèi)容,而本節(jié)課是建立在學(xué)生掌握了平行線(xiàn)的性質(zhì)及嚴(yán)格的證明等知識(shí)的基礎(chǔ)上展開(kāi)的,因此,學(xué)生具有良好的基礎(chǔ)。
活動(dòng)經(jīng)驗(yàn)基礎(chǔ): 本節(jié)課主要采取的 活動(dòng)形式是學(xué)生非常熟悉的自主探究與合作交流的學(xué)習(xí)方式,學(xué)生具有較熟悉的活動(dòng)經(jīng)驗(yàn).
二、教學(xué)任務(wù)分析
上一節(jié)課的學(xué)習(xí)中,學(xué)生對(duì)于平行線(xiàn)的判定定理和性質(zhì)定理以及與平行線(xiàn)相關(guān)的簡(jiǎn)單幾何證明是比較熟悉的,他們已經(jīng)具有初步的幾何意識(shí),形成了一定的邏輯思維能力和推理能力,本節(jié)課安排《三角形內(nèi)角和定理的證明》旨在利用平行線(xiàn)的相關(guān)知識(shí)來(lái)推導(dǎo)出新的定理以及靈活運(yùn)用新的定理解決相關(guān)問(wèn)題。為此,本節(jié)課的教學(xué)目標(biāo)是:
知識(shí)與技能:(1)掌握三角形內(nèi)角和定理的證明及簡(jiǎn)單應(yīng)用。
(2)靈活運(yùn)用三角形內(nèi)角和定理解決相關(guān)問(wèn)題。
數(shù)學(xué)能力:用多種方法證明三角形定理,培養(yǎng)一題多解的能力。
情感與態(tài)度:對(duì)比過(guò)去撕紙等探索過(guò)程,體會(huì)思維實(shí)驗(yàn)和符號(hào)化 的理性作用.
三、教學(xué)過(guò)程分析
本節(jié)課的設(shè)計(jì)分為四個(gè)環(huán)節(jié):情境引入探索新知反饋練習(xí)課堂小結(jié)
第一環(huán)節(jié):情境引入
活動(dòng)內(nèi)容:(1)用折紙的方法驗(yàn)證三角形內(nèi)角和定理.
實(shí)驗(yàn)1:先將紙片三角形一角折向其對(duì)邊,使頂點(diǎn)落在對(duì)邊上,折線(xiàn)與對(duì)邊平行(圖6-38(1))然后把另外兩角相向?qū)φ,使其頂點(diǎn)與已折角的頂點(diǎn)相嵌合(圖(2)、(3)),最后得圖(4)所示的結(jié)果
(1) (2) (3) (4)
試用自己的語(yǔ)言說(shuō)明這一結(jié)論的證明思路。想一想,還有其它折法嗎?
(2)實(shí)驗(yàn)2:將紙片三角形三頂角剪下,隨意將它們拼湊在一起。
試用自己的語(yǔ)言說(shuō)明這一結(jié)論的證明思路。想一想,如果只剪下一個(gè)角呢?
活動(dòng)目的:
對(duì)比過(guò)去撕紙等探索過(guò)程,體會(huì)思維實(shí)驗(yàn)和符號(hào)化的理性作用。將自己的操作轉(zhuǎn)化為符號(hào)語(yǔ)言對(duì)于學(xué)生來(lái)說(shuō)還存在一定困難,因此需要一個(gè)臺(tái)階,使學(xué)生逐步過(guò)渡到嚴(yán)格的證明.
教學(xué)效果:
說(shuō)理過(guò)程是學(xué)生所熟悉的,因此,學(xué)生能比較熟練地說(shuō)出用撕紙的方法可以驗(yàn)證三角形內(nèi)角和定理的原因。
第二環(huán)節(jié):探索新知
活動(dòng)內(nèi)容:
、 用嚴(yán)謹(jǐn)?shù)腵證明來(lái)論證三角形內(nèi) 角和定理.
② 看哪個(gè)同學(xué)想的方法最多?
方法一:過(guò)A點(diǎn)作DE∥BC
∵DE∥BC
DAB=B,EAC=C(兩直線(xiàn)平行,內(nèi)錯(cuò)角相等)
∵DAB+BAC+EAC=180
BAC+ C=180(等量代換)
方法二:作BC的延長(zhǎng)線(xiàn)CD,過(guò)點(diǎn)C作射線(xiàn)CE∥BA.
∵CE∥BA
ECD(兩直線(xiàn)平行,同位角相等)
ACE(兩直線(xiàn)平行,內(nèi)錯(cuò)角相等)
∵BCA+ACE+ECD=180
B+ACB=180(等量代換)
活動(dòng)目的:
用平行線(xiàn)的判定定理及性質(zhì)定理來(lái)推導(dǎo)出新的定理,讓學(xué)生再次體會(huì)幾何證明的嚴(yán)密性和數(shù)學(xué)的嚴(yán)謹(jǐn),培養(yǎng) 學(xué)生的邏輯推理能力。
教學(xué)效果:
添輔助線(xiàn)不是盲目的,而是為了證明某一結(jié)論,需要引用某個(gè)定義、公理、定理,但原圖形不具備直接使用它們的條件,這時(shí)就需要添輔助線(xiàn)創(chuàng)造條件,以達(dá)到 證明的目的
第三環(huán)節(jié):反饋練習(xí)
活動(dòng)內(nèi)容:
(1)△ABC中可以有3個(gè)銳角嗎? 3個(gè)直角呢? 2個(gè)直角呢?若有1個(gè)直角另外兩角有什么特點(diǎn)?
(2)△ABC中 ,C=90,A=30,B=?
(3)A=50,C,則△ABC中B=?
(4)三角形的三個(gè)內(nèi)角中,只能有____個(gè)直角或____個(gè)鈍角.
(5)任何一個(gè)三角形中,至少有____個(gè)銳角;至多有____個(gè)銳角.
(6)三角形中三角之比 為1∶2∶3,則三個(gè)角各為多少度?
(7)已知:△ABC中,B=2A。
(a)求B的度數(shù);
(b)若BD是AC邊上的高,求 DBC的度數(shù)?
活動(dòng)目的:
通過(guò)學(xué)生的 反饋練習(xí),使教師能全面了解學(xué)生對(duì)三角形內(nèi)角和定理的概念是否清楚,能否靈活運(yùn)用三角形內(nèi)角和定理,以便教師能及時(shí)地進(jìn)行查缺補(bǔ)漏.
教學(xué)效果:
學(xué)生對(duì)于三角形內(nèi)角和定理的掌握是非常熟練,因此,學(xué)生能較好地解決與三角形內(nèi)角和定理相關(guān)的問(wèn)題。
第四環(huán)節(jié):課堂小結(jié)
活動(dòng)內(nèi)容:
、 證明三角形內(nèi)角和定理有哪幾種方法?
② 輔助線(xiàn)的作法技巧.
、 三 角形內(nèi)角和定理的簡(jiǎn)單應(yīng)用.
活動(dòng)目的:
復(fù)習(xí)鞏固本課知識(shí),提高學(xué)生的掌握程度.
教學(xué)效果:
學(xué)生對(duì)于三角形內(nèi)角和定理的幾種不同的證明方法的理解比較深刻,并能熟練運(yùn)用三角形內(nèi)角和定理進(jìn)行相關(guān)證明.
課后練習(xí):課本第239頁(yè)隨堂練習(xí);第241頁(yè)習(xí)題6.6第1,2,3題
四、教學(xué)反思
三角形的有關(guān)知識(shí)是空間與圖形中最為核心、最為重要的內(nèi)容,它不僅是最基本的直線(xiàn)型平面圖形,而且?guī)缀跏茄芯克衅渌鼒D形的工具和基礎(chǔ).而三角形內(nèi)角和定理又是三角形中最為基礎(chǔ)的知識(shí),也是學(xué)生最為熟悉且能與小學(xué)、中學(xué)知識(shí)相關(guān)聯(lián)的知識(shí),看似簡(jiǎn)單,但如果處理不好,會(huì)導(dǎo)致學(xué)生有厭煩心理,為此,本節(jié)課的設(shè)計(jì)力圖實(shí)現(xiàn)以下特點(diǎn):
(1) 通過(guò)折紙與剪紙等操作讓學(xué)生獲得直接經(jīng)驗(yàn),然后從學(xué)生的直接經(jīng)驗(yàn)出發(fā),逐步轉(zhuǎn)到符號(hào)化處理,最后達(dá)到推理論證的要求。
(2) 充分展示學(xué)生的個(gè)性,體現(xiàn)學(xué)生是學(xué)習(xí)的主人這一主題。
(3) 添加輔助線(xiàn)是教學(xué)中的一個(gè)難點(diǎn), 如何添加輔助線(xiàn)則應(yīng)允許學(xué)生展開(kāi)思考并爭(zhēng)論,展示學(xué)生的思維過(guò)程,然后在老師的引導(dǎo)下達(dá)成共識(shí)。
【三角形內(nèi)角和教案】相關(guān)文章:
三角形內(nèi)角和教案12-12
《三角形的內(nèi)角和》教案05-17
三角形內(nèi)角和優(yōu)秀教案01-15
《三角形內(nèi)角和》數(shù)學(xué)教案06-16
三角形內(nèi)角和教案匯編9篇05-15
三角形內(nèi)角和教案集錦五篇05-16