中學(xué)數(shù)學(xué)教案
作為一名優(yōu)秀的教育工作者,時常需要用到教案,教案是教材及大綱與課堂教學(xué)的紐帶和橋梁。優(yōu)秀的教案都具備一些什么特點呢?以下是小編精心整理的中學(xué)數(shù)學(xué)教案,希望對大家有所幫助。
中學(xué)數(shù)學(xué)教案1
中學(xué)數(shù)學(xué)三角函數(shù)教案模板通過對三角函數(shù)模型的簡單應(yīng)用的學(xué)習(xí),使學(xué)生初步學(xué)會由圖象求解析式的方法,根據(jù)解析式作出圖象并研究性質(zhì)。
一、教學(xué)目標(biāo):
。1)通過對三角函數(shù)模型的簡單應(yīng)用的學(xué)習(xí),使學(xué)生初步學(xué)會由圖象求解析式的方法,根據(jù)解析式作出圖象并研究性質(zhì);
(2)體驗實際問題抽象為三角函數(shù)模型問題的過程,體會三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型;
。3)讓學(xué)生體驗一些具有周期性變化規(guī)律的實際問題的數(shù)學(xué)建模思想,從而培養(yǎng)學(xué)生的建模、分析問題、數(shù)形結(jié)合、抽象概括等能力。二、教學(xué)重點、難點:
重點:用三角函數(shù)模型解決一些具有周期變化規(guī)律的實際問題.難點:將某些問題抽象為三角函數(shù)模型。三、教學(xué)方法:
數(shù)學(xué)是一門培養(yǎng)人的思維、發(fā)展人的思維的重要學(xué)科,本節(jié)課的內(nèi)容是三角函數(shù)的應(yīng)用,所以應(yīng)讓學(xué)生多參與,讓其自主探究分析問題,然后由老師啟發(fā)、總結(jié)、提煉,升華為分析和解決問題的能力。四、教學(xué)過程:(一)課題引入
生活中普遍存在著周期性變化規(guī)律的現(xiàn)象,晝夜交替四季輪回,潮漲潮散、云卷云舒,情緒的起起落落,庭前的花開花謝,一切都逃不過數(shù)學(xué)的眼睛!這節(jié)課我們就來學(xué)習(xí)如何用數(shù)學(xué)的眼睛洞察我們身邊存在的周期現(xiàn)象-----1.6三角函數(shù)模型的簡單應(yīng)用。(二)典型例題
(1)由圖象探求三角函數(shù)模型的解析式
例1.如圖,某地一天從6~14時的溫度變化曲線近似滿足函數(shù)錯誤!未找到引用源。.
。1)求這一天6~14時的最大溫差;(2)寫出這段曲線的函數(shù)解析式
設(shè)計意圖:切入本節(jié)課的課題,讓學(xué)生明確學(xué)習(xí)任務(wù)和目標(biāo)。同時以設(shè)問和探索的.方式導(dǎo)入新課,創(chuàng)設(shè)情境,激發(fā)思維,做好基礎(chǔ)鋪墊,讓學(xué)生帶著問題,有目的地參與后續(xù)教學(xué)活動。
【問題的反思】:
、僖话愕,所求出的函數(shù)模型只能近似刻畫這天某個時段的溫度變化情況,因此應(yīng)當(dāng)特
別注意自變量的變化范圍;
、谂c學(xué)生一起探索?的各種求法;(這是本題的關(guān)鍵!也是難點。
設(shè)計意圖:提出問題,有學(xué)生動腦分析,自主探究,培養(yǎng)學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思考習(xí)慣。
歸納小結(jié)
本節(jié)課學(xué)習(xí)了三角函數(shù)模型的簡單應(yīng)用,進一步突出了函數(shù)來源于生活應(yīng)用于生活的思想,體驗了一些具有周期性變化規(guī)律的實際問題的數(shù)學(xué)“建模”思想。五、作業(yè)布置
1.書面作業(yè):(1)習(xí)題1.61---3
。2)一半徑為3m的水輪如右圖所示,水輪圓心O距離水面2m,已知水輪每分鐘轉(zhuǎn)動4圈,如果當(dāng)水輪上P點從水中浮現(xiàn)時(圖中
求P點相對于水面的高度h(m)與時間t(s)之間的函數(shù)關(guān)系式P點第一次達到最高點約要多長時間?
2.探究性作業(yè):請學(xué)生分小組對以下的問題或自選問題進行合作探究,并將各組的結(jié)果(無論成與敗)制成PPT在下節(jié)課上進行交流。
問題1電視臺的不同欄目播出的時間周期是不同的。有的每天播出,有的隔天播出,有的一周播出一次。請查閱當(dāng)?shù)氐碾娨暪?jié)目預(yù)告,統(tǒng)計不同欄目的播出周期。
問題2請你調(diào)查你們地區(qū)每天的用電情況,制定一項“消峰平谷”的電價方案。
問題3一個城市所在的經(jīng)度和緯度是如何影響日出和日落的時間的?收集其他有關(guān)的數(shù)據(jù)并提供理論證據(jù)支持你的結(jié)論。
這一過程是探究活動在時間上的延續(xù),是對課堂學(xué)習(xí)的必要補充。
二、教學(xué)反思
以問題引導(dǎo)教學(xué),讓學(xué)生聽有所思,思有所獲,獲有所感。問題串的設(shè)計,使學(xué)習(xí)內(nèi)容在難度和強度上循序漸進而又螺旋上升,并通過互動逐一達成教學(xué)目標(biāo),突出重點,突破難點,較好的提高了課堂教學(xué)的有效性。七、超級鏈接
1、設(shè)y?f(t)是某港口水的深度關(guān)于時間t(時)的函數(shù),其中0?t?24,下表是該港口某一天從0至24時記錄的時間t與水深y的關(guān)系.
中學(xué)數(shù)學(xué)教案2
教學(xué)目標(biāo)
1, 整理前兩個學(xué)段學(xué)過的整數(shù)、分?jǐn)?shù)(包括小數(shù))的知識,掌握正數(shù)和負(fù)數(shù)的概念;
2, 能區(qū)分兩種不同意義的量,會用符號表示正數(shù)和負(fù)數(shù);
3, 體驗數(shù)學(xué)發(fā)展的一個重要原因是生活實際的需要,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)難點 正確區(qū)分兩種不同意義的量。
知識重點 兩種相反意義的量
教學(xué)過程(師生活動) 設(shè)計理念
設(shè)置情境
引入課題 上課開始時,教師應(yīng)通過具體的例子,簡要說明在前兩個學(xué)段我們已經(jīng)學(xué)過的數(shù),并由此請學(xué)生思考:生
活中僅有這些“以前學(xué)過的數(shù)”夠用了嗎?下面的例子
僅供參考.
師:今天我們已經(jīng)是七年級的學(xué)生了,我是你們的數(shù)學(xué)老師.下面我先向你們做一下自我介紹,我的名字是__,身高1.73米,體重58.5千克,今年40歲.我們的班級是七(13)班,有60個同學(xué),其中男同學(xué)有22個,占全班總?cè)藬?shù)的37%…
問題1:老師剛才的介紹中出現(xiàn)了幾個數(shù)?分別是什么?你能將這些數(shù)按以前學(xué)過的數(shù)的分類方法進行分類嗎?
學(xué)生活動:思考,交流
師:以前學(xué)過的數(shù),實際上主要有兩大類,分別是整數(shù)和分?jǐn)?shù)(包括小數(shù)).
問題2:在生活中,僅有整數(shù)和分?jǐn)?shù)夠用了嗎?
請同學(xué)們看書(觀察本節(jié)前面的幾幅圖中用到了什么數(shù),讓學(xué)生感受引入負(fù)數(shù)的必要性)并思考討論,然后進行交流。
(也可以出示氣象預(yù)報中的氣溫圖,地圖中表示地形高低地形圖,工資卡中存取錢的記錄頁面等)
學(xué)生交流后,教師歸納:以前學(xué)過的數(shù)已經(jīng)不夠用了,有時候需要一種前面帶有“-”的新數(shù)。 先回顧小學(xué)里學(xué)過的數(shù)的類型,歸納出我們已經(jīng)學(xué)了整數(shù)和分?jǐn)?shù),然后,舉一些實際生活中共有相反意義的量,說明為了表示相反意義的量,我們需要引入負(fù)數(shù),這樣做強調(diào)了數(shù)學(xué)的嚴(yán)密性,但對于學(xué)生來說,更多
地感到了數(shù)學(xué)的枯燥乏味為了既復(fù)習(xí)小學(xué)里學(xué)過的數(shù),又能激發(fā)學(xué)生的學(xué)習(xí)興趣,所以創(chuàng)設(shè)如下的問題情境,以盡量貼近學(xué)生的實際.
這個問題能激發(fā)學(xué)生探究的欲望,學(xué)生自己看書學(xué)習(xí)是培養(yǎng)學(xué)生自主學(xué)習(xí)的重要途徑,都應(yīng)予以重視。
以上的情境和實例使學(xué)生體會生活中處處有數(shù)學(xué),通過實例,使學(xué)生獲取大量的感性材料,為正確建立相反意義的量奠定基礎(chǔ)。
分析問題
探究新知 問題3:前面帶有“一”號的新數(shù)我們應(yīng)怎樣命名它呢?為什么要引人負(fù)數(shù)呢?通常在日常生活中我們用正數(shù)和負(fù)數(shù)分別表示怎樣的量呢?
這些問題都必須要求學(xué)生理解.
教師可以用多媒體出示這些問題,讓學(xué)生帶著這些問題看書自學(xué),然后師生交流.
這階段主要是讓學(xué)生學(xué)會正數(shù)和負(fù)數(shù)的表示.
強調(diào):用正,負(fù)數(shù)表示實際問題中具有相反意義的量,而相反意義的量包含兩個要素:一是它們的意義相反,如向東與向西,收人與支出;二是它們都是數(shù)量,而且是同類的量. 這些問題是這節(jié)課的主要知識,教師要清楚地向?qū)W生說明,并且要注意語言的準(zhǔn)確與規(guī)范,要舍得花時間讓學(xué)充分發(fā)表想法。
舉一反三思維拓展經(jīng)過上面的討論交流,學(xué)生對為什么要引人負(fù)數(shù),對怎樣用正數(shù)和負(fù)數(shù)表示兩種相反意義的量有了初步的`理解,教師可以要求學(xué)生舉出實際生活中類似的例子,以加深對正數(shù)和負(fù)數(shù)概念的理解,并開拓思維.
問題4:請同學(xué)們舉出用正數(shù)和負(fù)數(shù)表示的例子.
問題5:你是怎樣理解“正整數(shù)”“負(fù)整數(shù),’’正分?jǐn)?shù)”和“負(fù)分?jǐn)?shù)”的呢?請舉例說明.
能否舉出例子是學(xué)生對知識掌握程度的體現(xiàn),也能進一步幫助學(xué)生理解引負(fù)數(shù)的必要性
課堂練習(xí) 教科書第5頁練習(xí)
小結(jié)與作業(yè)
課堂小結(jié) 圍繞下面兩點,以師生共同交流的方式進行:
1, 0由于實際問題中存在著相反意義的量,所以要引人負(fù)數(shù),這樣數(shù)的范圍就擴大了;
2,正數(shù)就是以前學(xué)過的0以外的數(shù)(或在其前面加“+”),負(fù)數(shù)就是在以前學(xué)過的0以外的數(shù)前面加“-”。
本課作業(yè) 教科書第7頁習(xí)題1.1 第1,2,4,5(第3題作為下節(jié)課的思考題。
作業(yè)可設(shè)必做題和選 做題,體現(xiàn)要求的層次性,以滿足不同學(xué)生的需要
中學(xué)數(shù)學(xué)教案3
教師提問3:以上變形依據(jù)是什么?
學(xué)生回答:等式的性質(zhì)1。
歸納:像上面那樣把等式一邊的'某項變號后移到另一邊,叫做移項。
師生共同完成解答過程。
設(shè)問4:以上解方程中“移項”起了什么作用?
學(xué)生討論、回答,師生共同整理:
通過移項,含未知數(shù)的項與常數(shù)項分別位于方程左右兩邊,使方程更接近于x=a的形式。
教師提問5:解這個方程,我們經(jīng)歷了那些步驟?列方程時找了怎樣的相等關(guān)系?
學(xué)生思考回答。
教師關(guān)注:
。1)學(xué)生對列方程解決實際問題的一般步驟:設(shè)未知數(shù),列代數(shù)式,列方程,是否清楚?
在參與觀察、比較、嘗試、交流等數(shù)學(xué)活動中,體驗探究發(fā)現(xiàn)成功的快樂。
活動三 解法運用
例2解方程
3x+7=32-2x
教師:出示問題
提問:解這個方程時,第一步我們先干什么?
學(xué)生講解,獨立完成,板演。
提問:“移項”是注意什么?
學(xué)生:變號。
教師關(guān)注:學(xué)生“移項”時是否能夠注意變號。
通過這個例題,掌握“ax+b=cx+d”類型的一元一次方程的解法。體驗“移項”這種變形在解方程中的作用,規(guī)范解題步驟。
活動四 鞏固提高
中學(xué)數(shù)學(xué)教案4
教學(xué)建議
知識結(jié)構(gòu)
重難點分析
本節(jié)的重點是的性質(zhì)和判定定理。是在平行四邊形的前提下定義的,首先她是平行四邊形,但它是特殊的平行四邊形,特殊之處就是“有一組鄰邊相等”,因而就增加了一些特殊的性質(zhì)和不同于平行四邊形的判定方法。的這些性質(zhì)和判定定理即是平行四邊形性質(zhì)與判定的延續(xù),又是以后要學(xué)習(xí)的正方形的基礎(chǔ)。
本節(jié)的難點是性質(zhì)的靈活應(yīng)用。由于是特殊的平行四邊形,所以它不但具有平行四邊形的性質(zhì),同時還具有自己獨特的性質(zhì)。如果得到一個平行四邊形是,就可以得到許多關(guān)于邊、角、對角線的條件,在實際解題中,應(yīng)該應(yīng)用哪些條件,怎樣應(yīng)用這些條件,常常讓許多學(xué)生手足無措,教師在教學(xué)過程中應(yīng)給予足夠重視。
教法建議
根據(jù)本節(jié)內(nèi)容的特點和與平行四邊形的關(guān)系,建議教師在教學(xué)過程中注意以下問題:
1.的知識,學(xué)生在小學(xué)時接觸過一些,可由小學(xué)學(xué)過的知識作為引入。
2.在現(xiàn)實中的實例較多,在講解的性質(zhì)和判定時,教師可自行準(zhǔn)備或由學(xué)生準(zhǔn)備一些生活實例來進行判別應(yīng)用了哪些性質(zhì)和判定,既增加了學(xué)生的參與感又鞏固了所學(xué)的知識.
3.如果條件允許,教師在講授這節(jié)內(nèi)容前,可指導(dǎo)學(xué)生按照教材148頁圖4-33所示,制作一個平行四邊形作為教學(xué)過程中的道具,既增強了學(xué)生的動手能力和參與感,有在教學(xué)中有切實的體例,使學(xué)生對知識的掌握更輕松些.
4.在對性質(zhì)的講解中,教師可將學(xué)生分成若干組,每個學(xué)生分別對事先準(zhǔn)備后的圖形進行邊、角、對角線的測量,然后在組內(nèi)進行整理、歸納.
5.由于和的性質(zhì)定理證明比較簡單,教師可引導(dǎo)學(xué)生分析思路,由學(xué)生來進行具體的證明.
6.在性質(zhì)應(yīng)用講解中,為便于理解掌握,教師要注意題目的層次安排。
一、教學(xué)目標(biāo)
1.掌握概念,知道與平行四邊形的關(guān)系.
2.掌握的性質(zhì).
3.通過運用知識解決具體問題,提高分析能力和觀察能力.
4.通過教具的演示培養(yǎng)學(xué)生的學(xué)習(xí)興趣.
5.根據(jù)平行四邊形與矩形、的從屬關(guān)系,通過畫圖向?qū)W生滲透集合思想.
6.通過性質(zhì)的學(xué)習(xí),體會的圖形美.
二、教法設(shè)計
觀察分析討論相結(jié)合的方法
三、重點·難點·疑點及解決辦法
1.教學(xué)重點:的性質(zhì)定理.
2.教學(xué)難點:把的'性質(zhì)和直角三角形的知識綜合應(yīng)用.
3.疑點:與矩形的性質(zhì)的區(qū)別.
四、課時安排
1課時
五、教具學(xué)具準(zhǔn)備
教具(做一個短邊可以運動的平行四邊形)、投影儀和膠片,常用畫圖工具
六、師生互動活動設(shè)計
教師演示教具、創(chuàng)設(shè)情境,引入新課,學(xué)生觀察討論;學(xué)生分析論證方法,教師適時點撥
七、教學(xué)步驟
【復(fù)習(xí)提問】
1.什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關(guān)系是什么?
2.矩形中對角線與大邊的夾角為,求小邊所對的兩條對角線的夾角.
3.矩形的一個角的平分線把較長的邊分成、,求矩形的周長.
【引入新課】
我們已經(jīng)學(xué)習(xí)了一種特殊的平行四邊形——矩形,其實還有另外的特殊平行四邊形,這時可將事先按課本中圖4-38做成的一個短邊也可以活動的教具進行演示,如圖,改變平行四邊形的邊,使之一組鄰進相等,引出概念.
【講解新課】
1.定義:有一組鄰邊相等的平行四邊形叫做.
講解這個定義時,要抓住概念的本質(zhì),應(yīng)突出兩條:
。1)強調(diào)是平行四邊形.
。2)一組鄰邊相等.
2.的性質(zhì):
教師強調(diào),既然是特殊的平行四邊形,因此它就具有平行四邊形的一切性質(zhì),此外由于它比平行四邊形多了“一組鄰邊相等”的條件,和矩形類似,也比平行四邊形增加了一些特殊性質(zhì).
下面研究的性質(zhì):
師:同學(xué)們根據(jù)的定義結(jié)合圖形猜一下有什么性質(zhì)(讓學(xué)生們討論,并引導(dǎo)學(xué)生分別從邊、角、對角線三個方面分析).
生:因為是有一組鄰邊相等的平行四邊形,所以根據(jù)平行四邊形對邊相等的性質(zhì)可以得到.
性質(zhì)定理1:的四條邊都相等.
由的四條邊都相等,根據(jù)平行四邊形對角線互相平分,可以得到
性質(zhì)定理2:的對角線互相垂直并且每一條對角線平分一組對角.
引導(dǎo)學(xué)生完成定理的規(guī)范證明.
師:觀察右圖,被對角線分成的四個直角三角形有什么關(guān)系?
生:全等.
師:它們的底和高和兩條對角線有什么關(guān)系?
生:分別是兩條對角線的一半.
師:如果設(shè)的兩條對角線分別為、,則的面積是什么?
生:
教師指出當(dāng)不易求出對角線長時,就用平行四邊形面積的一般計算方法計算面積.
例2已知:如右圖,是△的角平分線,交于,交于.
求證:四邊形是.
。ㄒ龑(dǎo)學(xué)生用定義來判定.)
例3已知的邊長為,對角線,相交于點,如右圖,求這個的對角線長和面積.
。1)按教材的方法求面積.
。2)還可以引導(dǎo)學(xué)生求出△一邊上的高,即的高,然后用平行四邊形的面積公式計算的面積.
【總結(jié)、擴展】
1.小結(jié):(打出投影)(圖4)
。1)、平行四邊形、四邊形的從屬關(guān)系:
。2)性質(zhì):圖5
、倬哂衅叫兴倪呅蔚乃行再|(zhì).
、谔赜行再|(zhì):四條邊相等;對角線互相垂直,且平分每一組對角.
八、布置作業(yè)
教材P158中6、7、8,P196中10
九、板書設(shè)計
標(biāo)題
定義……
性質(zhì)例2…… 小結(jié):
性質(zhì)定理1:……例3…… ……
性質(zhì)定理2:……
十、隨堂練習(xí)
教材P151中1、2、3
補充
1.的兩條對角線長分別是3和4,則周長和面積分別是___________、___________.
2.周長為80,一對角線為20,則相鄰兩角的度數(shù)為___________、____________.
中學(xué)數(shù)學(xué)教案5
一、目的要求
1、使學(xué)生初步理解一次函數(shù)與正比例函數(shù)的概念。
2、使學(xué)生能夠根據(jù)實際問題中的條件,確定一次函數(shù)與正比例函數(shù)的解析式。
二、內(nèi)容分析
1、初中主要是通過幾種簡單的函數(shù)的初步介紹來學(xué)習(xí)函數(shù)的,前面三小節(jié),先學(xué)習(xí)函數(shù)的概念與表示法,這是為學(xué)習(xí)后面的幾種具體的函數(shù)作準(zhǔn)備的,從本節(jié)開始,將依次學(xué)習(xí)一次函數(shù)(包括正比例函數(shù))、二次函數(shù)與反比例函數(shù)的有關(guān)知識,大體上,每種函數(shù)是按函數(shù)的解析式、圖象及性質(zhì)這個順序講述的,通過這些具體函數(shù)的學(xué)習(xí),學(xué)生可以加深對函數(shù)意義、函數(shù)表示法的認(rèn)識,并且,結(jié)合這些內(nèi)容,學(xué)生還會逐步熟悉函數(shù)的知識及有關(guān)的數(shù)學(xué)思想方法在解決實際問題中的應(yīng)用。
2、舊教材在講幾個具體的'函數(shù)時,是按先講正反比例函數(shù),后講一次、二次函數(shù)順序編排的,這是適當(dāng)照顧了學(xué)生在小學(xué)數(shù)學(xué)中學(xué)了正反比例關(guān)系的知識,注意了中小學(xué)的銜接,新教材則是安排先學(xué)習(xí)一次函數(shù),并且,把正比例函數(shù)作為一次函數(shù)的特例予以介紹,而最后才學(xué)習(xí)反比例函數(shù),為什么這樣安排呢?第一,這樣安排,比較符合學(xué)生由易到難的認(rèn)識規(guī)津,從函數(shù)角度看,一次函數(shù)的解析式、圖象與性質(zhì)都是比較簡單的,相對來說,反比例函數(shù)就要復(fù)雜一些了,特別是,反比例函數(shù)的圖象是由兩條曲線組成的,先學(xué)習(xí)反比例函數(shù)難度可能要大一些。第二,把正比例函數(shù)作為一次函數(shù)的特例介紹,既可以提高學(xué)習(xí)效益,又便于學(xué)生了解正比例函數(shù)與一次函數(shù)的關(guān)系,從而,可以更好地理解這兩種函數(shù)的概念、圖象與性質(zhì)。
3、“函數(shù)及其圖象”這一章的重點是一次函數(shù)的概念、圖象和性質(zhì),一方面,在學(xué)生初次接觸函數(shù)的有關(guān)內(nèi)容時,一定要結(jié)合具體函數(shù)進行學(xué)習(xí),因此,全章的主要內(nèi)容,是側(cè)重在具體函數(shù)的講述上的。另一方面,在大綱規(guī)定的幾種具體函數(shù)中,一次函數(shù)是最基本的,教科書對一次函數(shù)的討論也比較全面。通過一次函數(shù)的學(xué)習(xí),學(xué)生可以對函數(shù)的研究方法有一個初步的認(rèn)識與了解,從而能更好地把握學(xué)習(xí)二次函數(shù)、反比例函數(shù)的學(xué)習(xí)方法。
三、教學(xué)過程
復(fù)習(xí)提問:
1、什么是函數(shù)?
2、函數(shù)有哪幾種表示方法?
3、舉出幾個函數(shù)的例子。
新課講解:
可以選用提問時學(xué)生舉出的例子,也可以直接采用教科書中的四個函數(shù)的例子。然后讓學(xué)生觀察這些例子(實際上均是一次函數(shù)的解析式),y=x,s=3t等。觀察時,可以按下列問題引導(dǎo)學(xué)生思考:
(1)這些式子表示的是什么關(guān)系?(在學(xué)生明確這些式子表示函數(shù)關(guān)系后,可指出,這是函數(shù)。)
(2)這些函數(shù)中的自變量是什么?函數(shù)是什么?(在學(xué)生分清后,可指出,式子中等號左邊的y與s是函數(shù),等號右邊是一個代數(shù)式,其中的字母x與t是自變量。)
(3)在這些函數(shù)式中,表示函數(shù)的自變量的式子,分別是關(guān)于自變量的什么式呢?(這題牽扯到有關(guān)整式的基本概念,表示函數(shù)的自變量的式子也就是等號右邊的式子,都是關(guān)于自變量的一次式。)
(4)x的一次式的一般形式是什么?(結(jié)合一元一次方程的有關(guān)知識,可以知道,x的一次式是kx+b(k≠0)的形式。)
由以上的層層設(shè)問,最后給出一次函數(shù)的定義。
一般地,如果y=kx+b(k,b是常數(shù),k≠0)那么,y叫做x的一次函數(shù)。
對這個定義,要注意:
(1)x是變量,k,b是常數(shù);
(2)k≠0 (當(dāng)k=0時,式子變形成y=b的形式。b是x的0次式,y=b叫做常數(shù)函數(shù),這點,不一定向?qū)W生講述。)
由一次函數(shù)出發(fā),當(dāng)常數(shù)b=0時,一次函數(shù)kx+b(k≠0)就成為:y=kx(k是常數(shù),k≠0)我們把這樣的函數(shù)叫正比例函數(shù)。
在講述正比例函數(shù)時,首先,要注意適當(dāng)復(fù)習(xí)小學(xué)學(xué)過的正比例關(guān)系,小學(xué)數(shù)學(xué)是這樣陳述的:
兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。
寫成式子是(一定)
需指出,小學(xué)因為沒有學(xué)過負(fù)數(shù),實際的例子都是k>0的例子,對于正比例函數(shù),k也為負(fù)數(shù)。
其次,要注意引導(dǎo)學(xué)生找出一次函數(shù)與正比例函數(shù)之間的關(guān)系:正比例函數(shù)是特殊的一次函數(shù)。
課堂練習(xí):
教科書13、4節(jié)練習(xí)第1題.
中學(xué)數(shù)學(xué)教案6
知識技能
會通過“移項”變形求解“ax+b=cx+d”類型的一元一次方程。
數(shù)學(xué)思考
1.經(jīng)歷探索具體問題中的數(shù)量關(guān)系過程,體會一元一次方程是刻畫實際問題的有效數(shù)學(xué)模型。進一步發(fā)展符號意識。
2.通過一元一次方程的學(xué)習(xí),體會方程模型思想和化歸思想。
解決問題
能在具體情境中從數(shù)學(xué)角度和方法解決問題,發(fā)展應(yīng)用意識。
經(jīng)歷從不同角度尋求分析問題和解決問題的方法的過程,體驗解決問題方法的多樣性。
情感態(tài)度
經(jīng)歷觀察、實驗計算、交流等活動,激發(fā)求知欲,體驗探究發(fā)現(xiàn)的快樂。
教學(xué)重點
建立方程解決實際問題,會通過移項解 “ax+b=cx+d”類型的一元一次方程。
教學(xué)難點
分析實際問題中的相等關(guān)系,列出方程。
教學(xué)過程
活動一 知識回顧
解下列方程:
1. 3x+1=4
2. x-2=3
3. 2x+0.5x=-10
4. 3x-7x=2
提問:解這些方程時,方程的.解一般化成什么形式?這些題你采用了那些變形或運算?
教師:前面我們學(xué)習(xí)了簡單的一元一次方程的解法,下面請大家解下列方程。
出示問題(幻燈片)。
學(xué)生:獨立完成,板演2、4題,板演同學(xué)講解所用到的變形或運算,共同講評。
教師提問:(略)
教師追問:變形的依據(jù)是什么?
學(xué)生獨立思考、回答交流。
本次活動中教師關(guān)注:
。1)學(xué)生能否準(zhǔn)確理解運用等式性質(zhì)和合并同列項求解方程。
。2)學(xué)生對解一元一次方程的變形方向(化成x=a的形式)的理解。
通過這個環(huán)節(jié),引導(dǎo)學(xué)生回顧利用等式性質(zhì)和合并同類項對方程進行變形,再現(xiàn)等式兩邊同時加上(或減去)同一個數(shù)、兩邊同時乘以(除以,不為0)同一個數(shù)、合并同類項等運算,為繼續(xù)學(xué)習(xí)做好鋪墊。
活動二 問題探究
問題2:把一些圖書分給某班學(xué)生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本.這個班有多少學(xué)生?
教師:出示問題(投影片)
提問:在這個問題中,你知道了什么?根據(jù)現(xiàn)有經(jīng)驗?zāi)愦蛩阍趺醋觯?/p>
。▽W(xué)生嘗試提問)
學(xué)生:讀題,審題,獨立思考,討論交流。
1.找出問題中的已知數(shù)和已知條件。(獨立回答)
2.設(shè)未知數(shù):設(shè)這個班有x名學(xué)生。
3.列代數(shù)式:x參與運算,探索運算關(guān)系,表示相關(guān)量。(討論、回答、交流)
4.找相等關(guān)系:
這批書的總數(shù)是一個定值,表示它的兩個等式相等.(學(xué)生回答,教師追問)
中學(xué)數(shù)學(xué)教案7
許多人回想起學(xué)生時代的數(shù)學(xué)老師,常常有一個共同特征:表情嚴(yán)肅、特別認(rèn)真。上課時將題目(特別是難題巧解)一絲不茍地演示給學(xué)生看,或者是拎著一沓卷子大步流星地邁進教室,然后威嚴(yán)宣布:“X分鐘內(nèi)獨立完成,不許交頭接耳、相互討論!庇谑菍W(xué)生立刻埋頭演算,然后老師評判。
隨著新一輪數(shù)學(xué)課程改革的推進與深化,多元化的評價體系正在建立,數(shù)學(xué)教學(xué)也正發(fā)生著變化。數(shù)學(xué)課堂再不是單一的從復(fù)習(xí)舊知、基礎(chǔ)訓(xùn)練入手,而常常通過教師精心創(chuàng)設(shè)的一系列與生活相關(guān)的問題情境入手來導(dǎo)入新課;課堂上,老師不再是通過自己“嚴(yán)肅、認(rèn)真、精湛的講演”來完成既定的教學(xué)任務(wù),而常常是讓學(xué)生通過剪一剪,拼一拼,做一做,猜一猜,在實踐活動中發(fā)現(xiàn)數(shù)學(xué)、學(xué)習(xí)數(shù)學(xué)。這種教學(xué)方式不僅可以讓學(xué)生掌握數(shù)學(xué)的知識,而且讓學(xué)生了解了數(shù)學(xué)的來源,緊密聯(lián)系生活,激發(fā)了學(xué)習(xí)的興趣,關(guān)注了數(shù)學(xué)的過程與方法,拓展了對數(shù)學(xué)本質(zhì)的理解和認(rèn)識,培養(yǎng)了學(xué)生的合作意識。
但對此的看法褒貶不一,認(rèn)為數(shù)學(xué)教育的目的就是為了學(xué)好數(shù)學(xué),學(xué)校要教“真正”的數(shù)學(xué);這種做法“降低了數(shù)學(xué)思維訓(xùn)練的作用”;“生活性、趣味性是增強了‘好玩了’,但數(shù)學(xué)沒有了”;“數(shù)學(xué)教學(xué)卡通化、去數(shù)學(xué)化了”。我們的文化氛圍不太習(xí)慣學(xué)術(shù)爭鳴,有的一線教師甚至發(fā)出了“課程改革我們應(yīng)該聽誰的”感嘆。
一、產(chǎn)生這種分歧的根源
對一種現(xiàn)象不同的認(rèn)識必然有深層的根源。原因可能是多方面,有社會的、心理的,更多則是學(xué)術(shù)觀點上的分歧,我認(rèn)為從根本上講有兩個源頭。
1.對數(shù)學(xué)知識理解和認(rèn)識上的不同
任何時期,數(shù)學(xué)家往往會根據(jù)自己的工作對數(shù)學(xué)形成一個看法,這在數(shù)學(xué)家內(nèi)部往往也很難形成統(tǒng)一的意見。長期以來,數(shù)學(xué)知識被許多人認(rèn)為是客觀的、確定的、普遍有效的體系。近年來,隨著相對論、測不準(zhǔn)理論、模糊性科學(xué)的發(fā)展,以及以后現(xiàn)代知識觀從解構(gòu)科學(xué)知識的元敘事出發(fā),試圖用對話、理解、協(xié)商來消解客觀知識,用差異性、復(fù)雜性、開放性、不確定性來取代統(tǒng)一性、簡單性、封閉性、確定性,倡導(dǎo)相對主義的知識觀。數(shù)學(xué)史學(xué)家M.Kline更為明確地提出了“數(shù)學(xué):確定性的喪失”,提出“數(shù)學(xué)注定是要探索而不是知道,去追求真理而不是發(fā)現(xiàn)真理”,這是對數(shù)學(xué)教學(xué)中重視過程性知識、進行探索活動的有力支持。
數(shù)學(xué)研究需要演繹證明,但也離不開歸納、實驗、猜想。數(shù)學(xué)的發(fā)展正如英國著名的科學(xué)史學(xué)家丹皮爾所總結(jié)的:“希臘學(xué)者關(guān)于演繹幾何學(xué)的偉大發(fā)現(xiàn),使得亞里士多德在創(chuàng)立邏輯時,過于偏重推理。反之,費蘭西斯?培根堅持認(rèn)為歸納法具有獨特?zé)o二的重要性。這是一種自然的反動,因為他看到新的實驗方法具有遠大的前途。穆勒指出,真正的科學(xué)方法,應(yīng)包括歸納與演繹,這樣就把亞里士多德的研究與培根的研究成果結(jié)合起來了。”5經(jīng)典數(shù)學(xué)被認(rèn)為是一門演繹的科學(xué),抽象和嚴(yán)謹(jǐn)使數(shù)學(xué)顯示出獨特的魅力和神奇的力量,證明與推理是經(jīng)典數(shù)學(xué)研究的主要方法,F(xiàn)代數(shù)學(xué)的發(fā)展表明,數(shù)學(xué)不只是邏輯推理與證明,更需要歸納、猜想、審美直覺、實驗、探索。隨著現(xiàn)當(dāng)代數(shù)學(xué)的發(fā)展,數(shù)學(xué)中的算法與實驗愈益顯示出威力。在計算機上進行計算和模擬實驗已成為一種新的科學(xué)方法和技術(shù)。由于這種研究方法是與傳統(tǒng)方法很不相同的,計算機的使用正在改變數(shù)學(xué)的性質(zhì),數(shù)學(xué)正在由傳統(tǒng)的演繹的科學(xué)轉(zhuǎn)化為一門實驗與演繹并重的科學(xué)。
2.?dāng)?shù)學(xué)中“活動”的不同理解
對數(shù)學(xué)教學(xué)中要讓學(xué)生主動參與到數(shù)學(xué)學(xué)習(xí)活動中來現(xiàn)在一般持贊同意見,但對參與活動的方式卻有不同的理解。數(shù)學(xué)中的柏拉圖主義認(rèn)為,數(shù)學(xué)是理念世界的產(chǎn)物,與實踐經(jīng)驗無關(guān)的科學(xué)。在這種觀點支配下,則認(rèn)為數(shù)學(xué)“活動”只是“智力活動”。從事數(shù)學(xué)研究、學(xué)習(xí)數(shù)學(xué)只要紙和筆加上一個聰明的腦袋。然而,數(shù)學(xué)中的經(jīng)驗主義、擬經(jīng)驗主義的數(shù)學(xué)觀明確指出了數(shù)學(xué)發(fā)展對“理念世界”和“物理世界”經(jīng)驗的雙重依托。數(shù)學(xué)是抽象的科學(xué),但經(jīng)過多次抽象,遠離經(jīng)驗之源后,如果不回到經(jīng)驗就有退化的危險。許多數(shù)學(xué)家、數(shù)學(xué)哲學(xué)家都強調(diào)數(shù)學(xué)理性與經(jīng)驗的兩個側(cè)面的不可或缺性。人們公認(rèn)的最偉大的數(shù)學(xué)家阿基米德、牛頓、高斯、龐卡萊都同是偉大的物理學(xué)家,現(xiàn)代數(shù)學(xué)發(fā)展的趨勢也表明,只有具有現(xiàn)實意義的數(shù)學(xué)分支才具有廣闊的研究前景。無疑,學(xué)生的數(shù)學(xué)學(xué)習(xí)過程中,動手操作、實踐這樣的數(shù)學(xué)探究活動也是數(shù)學(xué)教學(xué)實踐中不可缺少的一種重要的學(xué)習(xí)方式。這是受現(xiàn)代數(shù)學(xué)發(fā)展內(nèi)在規(guī)律所制約的。
二、對數(shù)學(xué)“活動”教學(xué)的認(rèn)識
關(guān)于活動教學(xué)的思想源于公元前335年亞里士多德在呂克昂從事教學(xué)和科學(xué)研究活動。據(jù)說,他和他的學(xué)生喜歡在林蔭道上一邊散步一邊講學(xué)討論,所以他的學(xué)派也被稱為逍遙學(xué)派。1近代,皮亞杰在其發(fā)生認(rèn)識論中強調(diào)內(nèi)在智力過程起源于活動,前蘇聯(lián)的列維魯學(xué)派繼承了皮亞杰重視“活動”的傳統(tǒng),并對皮亞杰的理論進行了拓展,強調(diào):不僅認(rèn)知起源于外部活動,個體非認(rèn)知發(fā)展也同樣源于活動。人類一切心理活動都是在社會歷史發(fā)展過程中被改造為內(nèi)部活動,意識活動是物質(zhì)生活發(fā)展的結(jié)果和衍生物。皮亞杰關(guān)于兒童認(rèn)識發(fā)展的研究證明了反身抽象是數(shù)學(xué)概念獲得的主要方式,邏輯數(shù)學(xué)結(jié)構(gòu)不是由客體的'物理結(jié)構(gòu)或因果結(jié)構(gòu)派生出來的,而是“一系列不斷的反身抽象和一系列連續(xù)的自我調(diào)節(jié)的建構(gòu)!痹趯W(xué)生能夠富有意義的理解概念和原理的抽象形式之前,通過“動手操作”對數(shù)學(xué)對象進行具體的活動操作,是數(shù)學(xué)學(xué)習(xí)的一個重要環(huán)節(jié)。以杜威為代表的進步主義教學(xué)主張教育的內(nèi)容要與兒童的社會生活經(jīng)驗和活動密切相連,兒童的經(jīng)驗興趣決定課程的內(nèi)容和結(jié)構(gòu),倡導(dǎo)以兒童的主體活動的經(jīng)驗為中心來組織教學(xué)活動。即便是像數(shù)學(xué)這樣的理性學(xué)科也不能例外,“因為理性就是實驗的智慧……而它的作用又常在經(jīng)驗中受到檢驗”;顒訉體的影響是廣泛的,不只局限于學(xué)習(xí)方面,學(xué)生參與活動對其心理發(fā)展具有重要的意義。具體而言,參與具有認(rèn)知性和非認(rèn)知性雙重功能。對知識的掌握,思維能力的發(fā)展,學(xué)業(yè)成績的提高以及學(xué)習(xí)興趣、態(tài)度、意志品質(zhì)都具有積極的意義。事實上,人不僅可以從參與現(xiàn)實的生活情境中獲得體驗,而且可以從活動中產(chǎn)生原動力。只有不斷獲得新動力,滿足人的高度自主、主體的需要的活動,才是最有效、最有價值的活動。強調(diào)活動的實踐性和能動性,讓學(xué)生積極參與到教學(xué)活動過程中去,實現(xiàn)“實踐——認(rèn)識——再實踐——再認(rèn)識”的能動過程,有利于學(xué)生潛力的開發(fā)。
通過教師的引導(dǎo),學(xué)生自主參與,密切數(shù)學(xué)與生活實際的聯(lián)系,掌握數(shù)學(xué)知識的發(fā)生、形成過程和數(shù)學(xué)建模方法,形成用數(shù)學(xué)的意識。數(shù)學(xué)教學(xué)中,盡可能讓學(xué)生操作、討論、作圖、制作模型,教師讓學(xué)生通過自己的實踐學(xué)習(xí)數(shù)學(xué)。正如法國科學(xué)院院士G.?Cjoquest所說,“應(yīng)充分利用學(xué)生的主動性,他們不是通過聆聽一堂清晰美的講課來學(xué)習(xí)數(shù)學(xué),而是通過對數(shù)學(xué)對象作實驗而學(xué)習(xí)。”在數(shù)學(xué)教學(xué)中,所有能使學(xué)生進入個人活動的方法都應(yīng)該使用,教師的作用并非只是準(zhǔn)備一堂單純的課,而是要尋找使學(xué)生最大限度地參與活動的方法。
三、數(shù)學(xué)活動如何更好地幫助學(xué)生理解數(shù)學(xué),促進身心全面發(fā)展
傳統(tǒng)的數(shù)學(xué)教學(xué)中,許多數(shù)學(xué)老師信奉“精講多練”的金律,因為這種教學(xué)“效率高”,在知識的再現(xiàn)時會“熟能生巧”、“運用自如”。當(dāng)然數(shù)學(xué)學(xué)習(xí)中活動不是不重視,獨立思考、獨立做題等“思維活動”一直是首倡的學(xué)習(xí)方式。因為“數(shù)學(xué)是思維的體操”,自然在有些人看來,數(shù)學(xué)學(xué)習(xí)中的活動就是思維活動,誰解題快、準(zhǔn),誰就能得高分,數(shù)學(xué)就學(xué)得好。數(shù)學(xué)學(xué)習(xí)的目的因而簡(異)化為能得到一個理想的分?jǐn)?shù),進而升入一所理想的學(xué)校。這是許多學(xué)生、教師追求的“目標(biāo)”(當(dāng)然也成為相關(guān)部門評價的標(biāo)準(zhǔn))。數(shù)學(xué)的應(yīng)用,數(shù)學(xué)與生活的聯(lián)系只是一種裝飾(如果與考試無關(guān))。數(shù)學(xué)學(xué)習(xí)對大多數(shù)學(xué)生而言只不過是一個“跳板”,甚至是一種無奈。雖然幾乎每個人都知道學(xué)數(shù)學(xué)很重要,但是多數(shù)人只是由于在“知識改革命運”中舉足輕重——作為一個篩子決定了一個人的“前程”。這種教學(xué)方式(思想)在一定程度上成為中國數(shù)學(xué)教育的“特色”。
20xx年9月7日全美數(shù)學(xué)教師理事會(NCTM)前主席W.Lott博士率領(lǐng)32人數(shù)學(xué)教育代表團來北京師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院訪問,介紹到美國的數(shù)學(xué)課堂大多數(shù)由學(xué)生自己進行活動、探索30-35分鐘,甚至更多,老師講得很少。他們也在反思,這種教學(xué)方式是不是效率太低。他們聽說,在中國的情形是不是正好相反,基本上都由老師來講解,問我們這是不是真的?如何看待這一問題。中美雙方基本的看法是需要“尋找中間地帶”。事實上,我們的數(shù)學(xué)課堂正在(或者說已經(jīng))發(fā)生變化。
這種變化是不是走過頭了?不可否認(rèn),這種負(fù)面的現(xiàn)象由于種種原因已經(jīng)出現(xiàn)。20xx年6月,作為中加合作研究項目到西部某縣城調(diào)研,在某小學(xué)聽數(shù)學(xué)課,學(xué)校領(lǐng)導(dǎo)為了能讓數(shù)學(xué)課“活動起來”,安排了一位“有感染力的語文老師來上數(shù)學(xué)”,課上老師的“表演”算是出色,以生動活潑、富有趣味性的卡通畫來增加數(shù)學(xué)的趣味性,但就是數(shù)學(xué)沒有了,學(xué)生也難“活動”起來。對數(shù)學(xué)活動回歸生活的這種理解必然會出現(xiàn)數(shù)學(xué)教學(xué)卡通化代替數(shù)學(xué)化的現(xiàn)象,對數(shù)學(xué)教學(xué)產(chǎn)生嚴(yán)重的危害。
讓學(xué)生從輕松、愉快的情境中學(xué)習(xí)數(shù)學(xué)其實并沒走過頭,而是折射出大量具體的實踐需要我們?nèi)ヌ剿、總結(jié)。一些專家、學(xué)者的批評意見并不是要在教學(xué)實踐中封殺活動、探究數(shù)學(xué)與生活的聯(lián)系,而提醒人們在實踐中應(yīng)注意的問題。而且理論研究常常是超前的,也必須是超前的。作為教育任務(wù)的數(shù)學(xué),其目的應(yīng)是為了促進學(xué)生的身心發(fā)展,形成完滿的人格。正如弗賴登塔爾所言:“不要忘記數(shù)學(xué)在社會中扮演的角色,在過去、現(xiàn)在一直到將來,教數(shù)學(xué)的教室不可能浮在半空中,而學(xué)數(shù)學(xué)的學(xué)生也必然是屬于社會的”。因此不該“一味追求現(xiàn)代數(shù)學(xué)中形式變換的花樣”,一般說來,常規(guī)的課堂教學(xué)重知識的系統(tǒng)性,而通過活動的方式學(xué)習(xí)則更注重過程、培養(yǎng)興趣。事實證明,特別是在小學(xué)階段教學(xué)過程中只有將數(shù)學(xué)與它有關(guān)的現(xiàn)實世界背景緊密聯(lián)系在一起,也就是說只有通過具體問題情景到抽象化形式化的數(shù)學(xué)化過程來進行數(shù)學(xué)的教與學(xué),才能使學(xué)生獲得充滿著關(guān)系的、富有生命力的數(shù)學(xué)知識。
中學(xué)數(shù)學(xué)教案8
教學(xué)目的:
1、掌握掌握平面與平面間距離的概念,并能求出它們的距離
2、弄清平行平面之間的距離的定義;
教學(xué)重點:平行平面的距離的求法教學(xué)難點:平行平面的距離的求法
教學(xué)過程:
一、復(fù)習(xí)引入:
1、點到平面的距離:已知點是平面外的任意一點,過點作,垂足為,則唯一,則是點到平面的距離即:一點到它在一個平面內(nèi)的正射影的距離叫做這一點到這個平面的距離(轉(zhuǎn)化為點到點的距離)結(jié)論:連結(jié)平面外一點與內(nèi)一點所得的線段中,垂線段最短
2、直線到與它平行平面的距離:一條直線上的任一點到與它平行的平面的距離,叫做這條直線到平面的距離(轉(zhuǎn)化為點面距離)
二、講解新課:
1、兩個平行平面的公垂線、公垂線段:
。1)兩個平面的公垂線:和兩個平行平面同時垂直的直線,叫做兩個平面的公垂線
。2)兩個平面的公垂線段:公垂線夾在平行平面間的部分,叫做兩個平面的公垂線段
。3)兩個平行平面的公垂線段都相等
(4)公垂線段小于或等于任一條夾在這兩個平行平面間的線段長2、兩個平行平面的'距離:兩個平行平面的公垂線段的長度叫做兩個平行平面的距離
三、講解范例:
例1如圖,已知正三角形的邊形為,點D到各頂點的距離都是,求點D到這個三角形所在平面的距離解:設(shè)為點D在平面內(nèi)的射影,延長,交于,∴,∴即是的中心,是邊上的垂直平分線,在中,即點D到這個三角形所在平面的距離是。
四、課堂練習(xí):
五、課后作業(yè):
中學(xué)數(shù)學(xué)教案9
總結(jié)提問:通過列方程解決實際問題分析時,要經(jīng)歷那些步驟?書寫時呢?
教師提問1:這個方程與我們前面解過的方程有什么不同?
學(xué)生討論后發(fā)現(xiàn):方程的兩邊都有含x的項(3x與4x)和不含字母的常數(shù)項(20與-25).
教師提問2:怎樣才能使它向x=a的形式轉(zhuǎn)化呢?
學(xué)生思考、探索:為使方程的.右邊沒有含x的項,等號兩邊同減去4x,為使方程的左邊沒有常數(shù)項,等號兩邊同減去20.
中學(xué)數(shù)學(xué)教案10
5以內(nèi)的加減法第二課時
一、創(chuàng)設(shè)情境
昨天我們看到了一些小朋友在校園里澆花,今天他們又來了。你們看……(出示掛圖)
二、知識探索
1、看掛圖,弄清圖意。從連續(xù)的兩幅圖中了解原來
有5個同學(xué)澆花,走掉2人后,還剩下3人。
2、教學(xué)減法的一些知識。對5 – 2 =3的含義,要學(xué)
生從具體情境里體會、感受。5 – 2 的'計算,讓學(xué)生自己說說算法,可以聯(lián)系具體問題想,也可以用分與合的方法去想。
3、試一試。多數(shù)學(xué)生會列出算式3 –2 =1,也有可
能一些學(xué)生會列出算式3 – 1 =2。只要解釋符合圖意,就應(yīng)該肯定。
三、知識應(yīng)用
1、第1題、第2題要先說一說或擺一擺,再填寫算
式,并應(yīng)該組織學(xué)生進行小組交流,說說自己的想法。
2、第4題先要說一說圖意,弄清條件和問題,再寫
出算式并計算,然后交流自己的想法,體驗提出和解決問題的過程,進一步體會減法算式的含義。
3、第5題要讓同學(xué)之間合作練習(xí)。還要根據(jù)班級實
際,創(chuàng)設(shè)一些學(xué)生喜歡的練習(xí)形式,促進學(xué)生主動參與數(shù)學(xué)活動,鞏固2——5的加減法。
四、知識總結(jié)
五、能力檢測:
練習(xí)與檢測
中學(xué)數(shù)學(xué)教案11
教學(xué)過程:
一、計算訓(xùn)練:
出示:
450-120×8÷6180-40×4+÷5-12×3
。45+36)×(78-66)672-(250-18×5)(530-170)÷(15×4)
讓學(xué)生任選
一、二道題說說運算順序,在計算,比一比誰算得又快又對。學(xué)生完成后,集體訂正。
二、解決問題
1、某小學(xué)四年級一個班中有女生22人,男生有25人,四年級有13個這樣的班級,一共有學(xué)生多少人?
學(xué)生審題后獨立完成。
集體訂正時說說是怎樣想的。
比較:22×13+25×13 與(22+25)×13之間有什么區(qū)別和聯(lián)系。
2、果園里要運送1200箱水果,一輛卡車4次運了480箱,照這樣計算,還要運多少次才能運完?
分析:還要運多少次是什么意思?(是指運完480箱之后剩下的還需運的次數(shù))要求還要云幾次先要求出什么?(剩下的'箱數(shù)和每次運的箱數(shù))學(xué)生審題后獨立完成。
集體訂正時說說是怎樣想的。
三、解決問題,書本第6-9題。
第六題:討論“照這樣計算表示什么意思”“再增加2兩輛卡車”后現(xiàn)在有多少亮參與運輸。要求一共可以運多少箱“必須要知道哪兩個條件?學(xué)生列式計算,集體訂正,說說自己的解題過程。
第七題:
分析:要求“四年級比六年級少栽多少棵?”必須知道哪兩個條件?這兩個條件是否都已知?怎樣列式?
學(xué)生列綜合算式進行解答。
第八題:
著重引導(dǎo)學(xué)生理解“用面積9平方分米的方磚,460塊正好鋪滿”表示什么意思?
學(xué)生列式解答。
第九題:
學(xué)生先獨立完成后再討論。
中學(xué)數(shù)學(xué)教案12
一位來自阿肯色州的年輕太太格羅麗亞,正在加利福尼亞州旅行.她想在旅館租用一個房間,租期一周.辦事員此時正心緒不佳。辦事員:房費每天20元,要付現(xiàn)錢.格羅麗亞:很抱歉,先生,我沒帶現(xiàn)錢.但是我有一根金鏈,共7節(jié),每節(jié)都值20元以上.辦事員:好吧,把金鏈給我.格羅麗亞:現(xiàn)在不能給你.我得請珠寶匠把金鏈割斷,每天給你一節(jié),等到周末我有了現(xiàn)錢再把金鏈贖回.辦事員終于同意了,但格羅麗亞必須決定如何斷開金鏈的方法.格羅麗亞:我該三思而行,因為珠寶匠是按照他所切割和以后重新連接的節(jié)數(shù)來索價的.格羅麗亞想了一下,悟到她不必把每一節(jié)都割斷,因為她可以把一段段金鏈換進換出,以這種方式來付房費.當(dāng)她算出需要請珠寶匠割斷的節(jié)數(shù)時,她幾乎不能自信。你想一想需要割開多少節(jié)?
只需要割開一節(jié)。這一節(jié)應(yīng)是從一端數(shù)起的第三節(jié).把金鏈斷開成1節(jié),2節(jié),4節(jié)這樣三段后就能以換進換出的方式每天付給辦事員一節(jié)作為房費。
啊哈!領(lǐng)悟到下列兩點才能解題.第一,至少需要有1節(jié),2節(jié),4節(jié)這樣三段(即其節(jié)數(shù)成二重級數(shù)的一些段),這樣才能以各種不同的組合方式組成1節(jié),2節(jié),3節(jié),4節(jié),5節(jié),6節(jié)和7節(jié).我們在藥品混亂問題中已經(jīng)知道,這就是作為二進制記數(shù)法基礎(chǔ)的冪級數(shù).
第二,只需要割開一節(jié)就可以把金鏈分成符合要求的三段.關(guān)于這個問題,若把金鏈的長度增加,則可以想出一些新的問題.例如,假設(shè)格羅麗亞有一根63節(jié)的金鏈,她想把金鏈割開,以上面那種方式來付63天的房費(價格不變).要達到此種目的只需要割開三節(jié).你想出來了嗎?你能否根據(jù)金鏈的不同長度設(shè)計一個通用的解題程序,要求分割開的節(jié)數(shù)為最少?
有一個有趣的變相問題:若所經(jīng)手的n節(jié)首尾相連的閉合回路,例如說格羅麗亞有一串金項鏈,由79節(jié)相連而成,若每天房費為一節(jié),試問最少需要分割開幾節(jié)才能支付79天房費?
所有這些問題都跟二進制記數(shù)法有密切的關(guān)系.比如格羅麗亞的63節(jié)金項鏈如何分割?只要將63化成二進制表示:等于111111即63=1+2+4+8+16+32只要將從第二節(jié)開始的兩節(jié)割開,再將從第八節(jié)開始的八節(jié)割下來,和從第32節(jié)開始的32節(jié)割下來即可,這樣就有了從1,2,3,4,5,6,直到63的所有節(jié)數(shù).一般地,若有n節(jié)金鏈,n是形如2k-1類型的數(shù),將n化成二進制表示,再將所有1的位置所代表的2的冪的數(shù)相間隔地割開即可達到目的.但是對于其他任意類型的數(shù),卻不能奏效,比如對于格羅麗亞的79節(jié)金項鏈,79的二進制記數(shù)法表示為1001111.即79=1+2+4+8+0+0+64,這樣從1到15都能表示,可是從16到63都沒法表示,我把這個問題做到這里,也一時糊涂起來,但這個問題畢竟不是很復(fù)雜,咱們也學(xué)一學(xué)閔科夫斯基在課堂上口出狂言要解決四色問題的勁頭,摸索著來解決一把.咱們可以這樣:你不是要求節(jié)數(shù)最少嗎?假設(shè)n=a+b其中a是已經(jīng)找到的最大的那一節(jié)數(shù),b是比n小的已經(jīng)解決了的金鏈問題,由于b已經(jīng)解決,因此b的拆分能夠表示從1,2,3,...b-1,b的所有金鏈節(jié)數(shù),而再大一些的數(shù)就不能夠表示了,比如b+1,所以必須要a參加進來,如果n是奇數(shù),可令a=b+1,這樣n=2b+1,所以b=(n-1)/2,a=(n+1)/2,這樣就找到了最大的一節(jié)的節(jié)數(shù)a,然后對b=(n-1)/2繼續(xù)應(yīng)用如上的'辦法,即可解決問題.如果n是偶數(shù),可令a=b,這樣雖然a本身不能表示出b+1,但是可以從b的拆分中拿出一個1來(這個1是必須存在的,因為要表示從1,2,3,...b-1,b的所有數(shù))與a組成a+1也就是b+1.所以n=a+b=2a=2b,a=b=n/2.這樣也找到了n為偶數(shù)時最大的一節(jié)金鏈的節(jié)數(shù).對于b繼續(xù)如上的過程,就可以找到全部應(yīng)該斷開的金鏈節(jié)數(shù),我算出了從1到15的所有拆分如下:
1=1
2=1+1
3=1+2
4=1+1+2
5=1+1+3
6=1+2+3
7=1+2+4
8=1+1+2+4
9=1+1+2+5
10=1+1+3+5
11=1+1+3+6
12=1+2+3+6
13=1+2+3+7
14=1+2+4+7
15=1+2+4+8
對于上面的格羅麗亞太太的79節(jié)金項鏈,79+1=80,80/2=40,所以最大的一節(jié)就是40節(jié),79-40=39,39+1=40,40/2=20,所以第二大的一節(jié)就是20節(jié),39-20=19,19+1=20,20/2=10,第三大的一節(jié)是10節(jié),19-10=9,9+1=10,10/2=5,又找到了一節(jié)是5,9-5=4,4的表示法如上已經(jīng)列出來了:4=1+1+2.最后得到79節(jié)的金項鏈的分割法:1,1,2,5,10,20,40.過去我也碰到過一道類似的題,是23節(jié)金項鏈,也能夠很容易地解決:23+1=24,24/2=12;23-12=11,11=1+1+3+6;所以23的分割法為:1,1,3,6,12.顯然,對于2k-1類型的數(shù),用這里的辦法與用二進制記數(shù)法得出的結(jié)果是一致的.
從上面所列出的拆分法可以看出,如果2k=2k+1,那么n一定要用k+1個數(shù)來表示,即:n=a0+a1+a2+...+ak.
可以用數(shù)學(xué)歸納法很容易地證明這是正確的.那么還有沒有比這更少的分割法呢?可以證明沒有了.從我們的分析方法中可以看出,這是一個構(gòu)造性的推理過程,假如還有比這更少的分割法,那么相當(dāng)于在表達式n=a0+a1+a2+...+ak.中進行了某些組合,比如將a1+a2合并成新的a1,那么原來的有些組合就表示不出來了,例如a0+a2,就沒有辦法組合了.當(dāng)然,一個數(shù)的拆分不是唯一的,前面的23節(jié)金鏈還可以分成1,2,3,6,11.你可以試試,這種分割法照樣能滿足要求.前面的分析中也可以把(n-1)/2留下來作為最大的節(jié)數(shù),但是這樣分出來的節(jié)數(shù)就不一定都是最少的了,例如把15這樣分割,會得到:1,1,2,4,7.雖然能夠滿足付房費的要求,但是就不是最優(yōu)解了.最后總結(jié)一下,把前面的算法過程公式化可以得到:
k-1r-1k-1
n=(n+c0)/2+{[n-cs2s+cr2r]/2r+1}+[n-cr2r]/2k
r=1s=0r=0
其中c0,c1,...ck-1等等是1或是0取決于每一步得出的數(shù)的奇偶性.其實最后一項等于1,這樣可以得出:
k-1
n-2k=cr2r
r=0
a0=(n+c0)/2
i-1
ai=[n-cs2s+ci2i]/2i+11(i=1,2,3,...k-1)
s=0
ak=1
當(dāng)然,編成計算機程序還是用遞歸程序比較簡單.這里列出這些公式是為了保留存照。
中學(xué)數(shù)學(xué)教案13
2.某貨運公司要用若干輛汽車運送一批貨物。如果每輛拉6噸,則剩余15噸;如果每輛拉8噸,則差5噸才能將汽車全部裝滿。問運送這批貨物的汽車多少量?
3.小明步行由A地去B地,若每小時走6千米,則比規(guī)定時間遲到1小時;若每小時走8千米,則比規(guī)定時間早到0.5小時。求A、B兩地之間的距離。
教師按順序出示問題。
學(xué)生獨立完成,用實物投影展示部分學(xué)而生練習(xí)。
教師關(guān)注:
1.學(xué)生在計算中可能出現(xiàn)的錯誤。
2.x系數(shù)為分?jǐn)?shù)時,可用乘的辦法,化系數(shù)為1。
3.用實物投影展示學(xué)困生的完成情況,進行評價、鼓勵。
鞏固“ax+b=cx+d”類型的`一元一次方程的解法,反饋學(xué)生對解方程步驟的掌握情況和可能出現(xiàn)的計算錯誤。
2、3題的重點是在新情境中引導(dǎo)學(xué)生利用已有經(jīng)驗解決實際問題,達到鞏固提高的目的。
活動五
提問1:今天我們學(xué)習(xí)了解方程的那種變形?它有什么作用、應(yīng)注意什么?
提問2:本節(jié)課重點利用了什么相等關(guān)系,來列的方程?
教師組織學(xué)生就本節(jié)課所學(xué)知識進行小結(jié)。
學(xué)生進行總結(jié)歸納、回答交流,相互完善補充。
教師關(guān)注:學(xué)生能否提煉出本節(jié)課的重點內(nèi)容,如果不能,教師則提出具體問題,引導(dǎo)學(xué)生思考、交流。
引導(dǎo)學(xué)生對本節(jié)所學(xué)知識進行歸納、總結(jié)和梳理,以便于學(xué)生掌握和運用。
布置作業(yè):
第93頁第3題
【中學(xué)數(shù)學(xué)教案】相關(guān)文章:
數(shù)學(xué)教案大班06-23
簡單的數(shù)學(xué)教案08-03
初中數(shù)學(xué)教案04-15
小學(xué)數(shù)學(xué)教案[精選]08-04
小學(xué)數(shù)學(xué)教案【經(jīng)典】08-01
[經(jīng)典]小學(xué)數(shù)學(xué)教案08-09
初中數(shù)學(xué)教案11-26
幼兒的數(shù)學(xué)教案03-01