丁香花无码AV在线,欧美日韩国产色,年轻人手机在线免费视频,伊人成人在线,可以直接免费观看的av网站,日本三级香港三级人妇99,亚洲免费二区

有理數(shù)的加法教案

時間:2024-07-31 13:12:42 教案 我要投稿

有理數(shù)的加法教案(錦集15篇)

  作為一位兢兢業(yè)業(yè)的人民教師,就難以避免地要準備教案,教案是教學藍圖,可以有效提高教學效率。那么寫教案需要注意哪些問題呢?以下是小編為大家整理的有理數(shù)的加法教案,希望對大家有所幫助。

有理數(shù)的加法教案(錦集15篇)

有理數(shù)的加法教案1

  今天我說課的題目是“有理數(shù)的加法(一)"。本節(jié)課選自華東師范大學出版社出版的〈義務教育課程標準實驗教科書〉七年級(上),。這一節(jié)課是本冊書第二章第六節(jié)第一課時的內(nèi)容。下面我就從以下四個方面一一教材分析、教材處理、教學方法和教學手段、教學過程的設計向大家介紹一下我對本節(jié)課的理解與設計。

  一、教材分析

  分析本節(jié)課在教材中的地位和作用,以及在分析數(shù)學大綱的基礎上確定本節(jié)課的教學目標、重點和難點。首先來看一下本節(jié)課在教材中的地位和作用。

  1、 有理數(shù)的加法在整個知識系統(tǒng)中的地位和作用是很重要的。初中階段要培養(yǎng)學生的運算能力、邏輯思維能力和空間想象能力以及讓學生根據(jù)一些現(xiàn)實模型,把它轉化成數(shù)學問題,從而培養(yǎng)學生的數(shù)學意識,增強學生對數(shù)學的理解和解決實際問題的能力。運算能力的培養(yǎng)主要是在初一階段完成。有理數(shù)的加法作為有理數(shù)的運算的一種,它是有理數(shù)運算的重要基礎之一,它是整個初中代數(shù)的一個基礎,它直接關系到有理數(shù)運算、實數(shù)運算、代數(shù)式運算、解方程、、研究函數(shù)等內(nèi)容的學習。

  2、 就第二章而言,有理數(shù)的加法是本章的一個重點。有理數(shù)這一章分為兩大部分一-有理數(shù)的意義和有理數(shù)的運算,有理數(shù)的意義是有理數(shù)運算的基礎,有理數(shù)的混合運算是這一章的難點,但混合運算是以各種基本運算為基礎的。在有理數(shù)范圍內(nèi)進行的各種運算:加、減法可以統(tǒng)一成為加法,乘法、除法和乘方可以統(tǒng)一成乘法,因此加法和乘法的運算是本章的關鍵,而加法又是學生接觸的第一種有理數(shù)運算,學生能否接受和形成在有理數(shù)范圍內(nèi)進行的各種運算的思考方式(確定結果的符合和絕對值),關鍵是這一節(jié)的學習。

  從以上兩點不難看出它的地位和作用都是很重要的。

  接下來,介紹本節(jié)課的教學目標、重點和難點。(結合微機顯示)

  教學大綱是我們確定教學目標,重點和難點的依據(jù)。教學大鋼規(guī)定,在有理數(shù)的加法的第一節(jié)要使學生理解有理數(shù)加法的意義,理解有理數(shù)的加法法則,并運用法則進行準確運算。因此根據(jù)教學大綱的要求,確定了本節(jié)課的教學目標。1、知識目標是:“(1)理解有理數(shù)加法的意義;(2)理解并掌握有理數(shù)加法的法則;(3)應用有理數(shù)加法法則進行準確運算;(4)滲透數(shù)形結合的思想。2能力目標是:(1)培養(yǎng)學生準確運算的能力;(2)培養(yǎng)學生歸納總結知識的能力;3、德育目標是;(1)滲透由特殊到一般的辯證唯物主義思想:(2)培養(yǎng)學生嚴謹?shù)乃季S品質(zhì)。有理數(shù)加法的意義與小學學習的`在正有理數(shù)和零的范圍內(nèi)進行的加法運算的意義相同,讓學生理解即可,有理數(shù)的加法法則的理解與運用是本節(jié)的重點內(nèi)容。因此本節(jié)課的重點是:有理數(shù)加法法則的理解與運用。由于本階段的學生很難把握住事物主要特征:如異號兩數(shù)、絕對值不相等的異號兩數(shù)和互為相反數(shù)之間的關系,這就對法則的理解造成困難。因此我確定本節(jié)課的難,是是;有理數(shù)加法法則的理解。

  二、教材處理

  本節(jié)課是在前面學習了有理數(shù)的意義的基礎上進行的,學生已經(jīng)很牢固地掌握了正數(shù)、負數(shù)、數(shù)軸、相反數(shù)、絕對值等概念,因此我沒有把時間過多地放在復習這些舊知識上,而是利用學生的好奇心,采用生動形象的事例,讓學生充當指揮官的角色,親身參加探索發(fā)現(xiàn),從而獲取知識。在法則的得出過程當中,我引進了現(xiàn)代化的教學工具微機,讓學生在微機演示的一種動態(tài)變化中自己發(fā)現(xiàn)規(guī)律歸納總結,這不但增加了課堂的趣味性提高了學生的能力。而且直接地向?qū)W生滲透了數(shù)形結合的思想。在法則的應用這一環(huán)節(jié)我又選配了一些變式練習,通過書上的基本練習達到訓練雙基的目的,通過變式練習達到發(fā)展智力、提高能力的目的。這些我將在教學過程的設計簾具體體現(xiàn)。而且在做練習的過程當中讓學生互相提問,使課堂在學生的參與下積極有序的進行。

  三、教學方法和數(shù)學孚段

  在教學過程中,我注重體現(xiàn)教師的導向作用和學生的主體地位,。本節(jié)是新課內(nèi)容的學習,。教學過程中盡力引導學生成為知識的發(fā)現(xiàn)者,把教師的點撥和學生解決問題結合起來,為學生創(chuàng)設情境,從而不斷激發(fā)學生的求知欲望和學習興趣,使學生輕松愉快地學習不斷克服學生學習中的被動情況,使其在教學過程中在掌握知識同時、發(fā)展智力、受到教育。

  四、教學過程的設計

  1, 引入:再課堂的引入上,開始我本打算選擇教材上的例子,但是它過于簡單。并且不宜于引起學生的注意,所以我選擇了學生們感興趣的軍事問題,讓學生在充當指揮官的同時,有一種解決問題的成就感,從而使學生積極主動的學習,并且營造了良好的學習氛圍。

  2, 探索規(guī)律:法則的得出重要體現(xiàn)知識的發(fā)生,發(fā)展,形成過程。我通過了一個小人在坐標軸上來回的移動,使學生在小人的移動過程當中體會兩個數(shù)相加的變化規(guī)律。由于采用了形式活潑的教學手段,學生能夠全副身心的投入到思考問題中去,讓學生親身參加了探索發(fā)現(xiàn),獲取知識和技能的全過程。最后由學生對規(guī)律進行歸納總結補充,從而得出有理數(shù)的加法法則。

  3, 鞏固練習:再習題的配備上,我注意了學生的思維是一個循序漸進的過程,所以習題的配備由難而易,使學生在練習的過程當中能夠逐步的提高能力,得到發(fā)展。并且采用男生出題,女生回答;女生出題,男生回答,活躍課堂氣氛,充分調(diào)動學生的積極性。使學生在一種比較活躍的氛圍中,解決各種問題。

  4, 歸納總結:歸納總結由學生完成,并且做適當?shù)难a充。最后教師對本節(jié)的課進行說明。

  以上是我對本節(jié)課的理解和設計。希望各位老師批評指正,以達到提高個人教學能力的目的。

  要的。初中階段要培養(yǎng)學生的運算能力、邏輯思維能力和空間想象能力以及讓學生根據(jù)一些現(xiàn)實模型,把它轉化成數(shù)學問題,從而培養(yǎng)學生的數(shù)學意識,增強學生對數(shù)學的理解和解決實際問題的能力。運算能力的培養(yǎng)主要是在初一階段完成。有理數(shù)的加法作為有理數(shù)的運算的一種,它是有理數(shù)運算的重要基礎之一,它是整個初中代數(shù)的一個基礎,它直接關系到有理數(shù)運算、實數(shù)運算、代數(shù)式運算、解方程、、研究函數(shù)等內(nèi)容的學習。

  2、 就第一章而言,有理數(shù)的加法是本章的一個重點。有理數(shù)這一章分為兩大部分一-有理數(shù)的意義和有理數(shù)的運算,有理數(shù)的意義是有理數(shù)運算的基礎,有理數(shù)的混合運算是這一章的難點,但混合運算是以各種基本運算為基礎的。在有理數(shù)范圍內(nèi)進行的各種運算:加、減法可以統(tǒng)一成為加法,乘法、除法和乘方可以統(tǒng)一成乘法,因此加法和乘法的運算是本章的關鍵,而加法又是學生接觸的第一種有理數(shù)運算,學生能否接受和形成在有理數(shù)范圍內(nèi)進行的各種運算的思考方式(確定結果的符合和絕對值),關鍵是這一節(jié)的學習。

  從以上兩點不難看出它的地位和作用都是很重要的。

  接下來,介紹本節(jié)課的教學目標、重點和難點。

  教學大綱是我們確定教學目標,重點和難點的依據(jù)。教學大綱規(guī)定,在有理數(shù)的加法的第一節(jié)要使學生理解有理數(shù)加法的意義,理解有理數(shù)的加法法則,并運用法則進行準確運算。因此根據(jù)教學大綱的要求,確定了本節(jié)課的教學目標。1、知識目標是:“(1)理解有理數(shù)加法的意義;(2)理解并掌握有理數(shù)加法的法則;(3)應用有理數(shù)加法法則進行準確運算;(4)滲透數(shù)形結合的思想。2能力目標是:(1)培養(yǎng)學生準確運算的能力;(2)培養(yǎng)學生歸納總結知識的能力;3、德育目標是;(1)滲透由特殊到一般的辯證唯物主義思想:(2)培養(yǎng)學生嚴謹?shù)乃季S品質(zhì)。有理數(shù)加法的意義與小學學習的在正有理數(shù)和零的范圍內(nèi)進行的加法運算的意義相同,讓學生理解即可,有理數(shù)的加法法則的理解與運用是本節(jié)的重點內(nèi)容。因此本節(jié)課的重點是:有理數(shù)加法法則的理解與運用。由于本階段的學生很難把握住事物主要特征:如異號兩數(shù)、絕對值不相等的異號兩數(shù)和互為相反數(shù)之間的關系,這就對法則的理解造成困難。因此我確定本節(jié)課的難,是有理數(shù)加法法則的理解。

  以上是我對本節(jié)課的理解和設計。希望各位老師批評指正,以達到提高個人教學能力的目的。

有理數(shù)的加法教案2

  教學目標:

  1、使學生掌握有理數(shù)加法的運算律,并能運用加法運算律簡化運算。

  2、培養(yǎng)學生觀察、比較、歸納及運算能力。

  重點:有理數(shù)加法運算律及其運用。

  重點:靈活運用運算律

  教學過程:

  一、創(chuàng)設情境,引入新課

  1、小學時已學過的加法運算律有哪幾條?

  2、猜一猜:在有理數(shù)的加法中,這兩條運算律仍然適用嗎?

  3、(1)計算30+(-20)=__________=______,-20+30=___________=_____;

  (2)[8+(-5)]+(-4)=_______=______, 8+[(-5)+(-4)]=_______=______。

  二、講授新課

  教師:你會用文字表述加法的兩條運算律嗎?你會用字母表示加法的這兩條運算律嗎?

 。▽W生回答省略)

  師生共同歸納:加法交換律:兩個數(shù)相加,交換加數(shù)的位置,和不變。 即:a+b=b+a

  加法結合律:三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。即(a+b)+c=a+(b+c)

  講解例3

  教師:例3中是怎樣使計算簡化的?這樣做的根據(jù)是什么?(請兩位同學起來回答)

  三、鞏固知識

  教師:例4中用了兩種方法,比較兩種解法,哪種方法比較好?解法2中使用了哪些運算律?

  師生共同得出:解法2比較好,因為它的運算量比較小。解法2中使用了加法交換律和加法結合律。

  四、總結

  本節(jié)課主要學習有理數(shù)加法運算律及其運用,主要用到的思想方法是類比思想,需要注意的是:有理數(shù)的`加法運算律與小學學習的運算律相同,運用加法運算律的目的為了簡化運算。解題技巧是將正數(shù)分別相加,再把負數(shù)分別相加,然后再把它們的和相加。

  五、布置作業(yè)

有理數(shù)的加法教案3

  教學目標

  1、理解掌握有理數(shù)的減法法則,會將有理數(shù)的減法運算轉化為加法運算;

  2、通過把減法運算轉化為加法運算,向?qū)W生滲透轉化思想,通過有理數(shù)的減法運算,培養(yǎng)學生的運算能力。

  3、通過揭示有理數(shù)的減法法則,滲透事物間普遍聯(lián)系、相互轉化的辯證唯物主義思想。

  教學建議

  (一)重點、難點分析

  本節(jié)重點是運用有理數(shù)的減法法則熟練進行減法運算。解有理數(shù)減法的計算題需嚴格掌握兩個步驟:首先將減法運算轉化為加法運算,然后依據(jù)有理數(shù)加法法則確定所求結果的符號和絕對值。理解有理數(shù)的減法法則是難點,突破的關鍵是轉化,變減為加。學習中要注意體會:小學遇到的小數(shù)減大數(shù)不會減的問題解決了,小數(shù)減大數(shù)的差是負數(shù),在有理數(shù)范圍內(nèi),減法總可以實施。

 。ǘ┲R結構

  (三)教法建議

  1、教師指導學生閱讀教材后強調(diào)指出:由于把減數(shù)變?yōu)樗南喾磾?shù),從而減法轉化為加法。有理數(shù)的加法和減法,當引進負數(shù)后就可以統(tǒng)一用加法來解決。

  2、不論減數(shù)是正數(shù)、負數(shù)或是零,都符合有理數(shù)減法法則。在使用法則時,注意被減數(shù)是永不變的。

  3、因為任何減法運算都可以統(tǒng)一成加法運算,所以我們沒有必要再規(guī)定幾個帶有減法的運算律,這樣有利于知識的鞏固和記憶。

  4、注意引入負數(shù)后,小的數(shù)減去大的`數(shù)就可以進行了,其差可用負數(shù)表示。

  教學設計示例:

  有理數(shù)的減法

  一、素質(zhì)教育目標

 。ㄒ唬┲R教學點

  1、掌握有理數(shù)的減法法則。

  2、進行有理數(shù)的減法運算。

  (二)能力訓練點

  1、通過把減法運算轉化為加法運算,向?qū)W生滲透轉化思想。

  2、通過有理數(shù)減法法則的推導,發(fā)展學生的邏輯思維能力。

  3、通過有理數(shù)的減法運算,培養(yǎng)學生的運算能力。

 。ㄈ┑掠凉B透點

  通過揭示有理數(shù)的減法法則,滲透事物間普遍聯(lián)系、相互轉化的辯證唯物主義思想。

 。ㄋ模┟烙凉B透點

  在小學算術里減法不能永遠實施,學習了本節(jié)課知道減法在有理數(shù)范圍內(nèi)可以永遠實施,體現(xiàn)了知識體系的完整美。

  二、學法引導

  1、教學方法:教師盡量引導學生分析、歸納總結,以學生為主體,師生共同參與教學活動。

  2、學生學法:探索新知→歸納結論→練習鞏固。

  三、重點、難點、疑點及解決辦法

  1、重點:有理數(shù)減法法則和運算。

  2、難點:有理數(shù)減法法則的推導。

  四、課時安排

  1課時

  五、教具學具準備

  電腦、投影儀、自制膠片。

  六、師生互動活動設計

  教師提出實際問題,學生積極參與探索新知,教師出示練習題,學生以多種方式討論解決。

  七、教學步驟

 。ㄒ唬﹦(chuàng)設情境,引入新課

  1、計算(口答)(1);(2)-3+(-7);

  (3)-10+(+3);(4)+10+(-3)。

  2、由實物投影顯示課本第42頁本章引言中的畫面,這是北京冬季里的一天,白天的最高氣溫是10℃,夜晚的最低氣溫是-5℃。這一天的最高氣溫比最低氣溫高多少?

  教師引導學生觀察:

  生:10℃比-5℃高15℃。

  師:能不能列出算式計算呢?

  生:10-(-5)。

  師:如何計算呢?

  教師總結:這就是我們今天要學的內(nèi)容。(引入新課,板書課題)

  【教法說明】

  1、題目既復習鞏固有理數(shù)加法法則,同時為進行有理數(shù)減法運算打基礎。2題是一個具體實例,教師創(chuàng)設問題情境,激發(fā)學生的認知興趣,把具體實例抽象成數(shù)學問題,從而點明本節(jié)課課題—有理數(shù)的減法。

 。ǘ┨剿餍轮,講授新課

  師:大家知道10-3=7。誰能把10-3=7這個式子中的性質(zhì)符號補出來呢?

  生:(+10)-(+3)=+7。

  師:計算:(+10)+(-3)得多少呢?

  生:(+10)+(-3)=+7。

  師:讓學生觀察兩式結果,由此得到:

  師:通過上述題,同學們觀察減法是否可以轉化為加法計算呢?生:可以。

  師:是如何轉化的呢?

  生:減去一個正數(shù)(+3),等于加上它的相反數(shù)(-3)。

  【教法說明】

  教師發(fā)揮主導作用,注重學生的參與意識,充分發(fā)展學生的思維能力,讓學生通過嘗試,自己認識減法可以轉化為加法計算。

  2、再看一題,計算(-10)-(-3)。

  教師啟發(fā):要解決這個問題,根據(jù)有理數(shù)減法的意義,這就是要求一個數(shù)使它與(-3)相加會得到-10,那么這個數(shù)是誰呢?

  生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7。教師給另外一個問題:計算(-10)+(+3)。

  生:(-10)+(+3)=-7。

  教師引導、學生觀察上述兩題結果,由此得到:

  教師進一步引導學生觀察(2)式;你能得到什么結論呢?

  生:減去一個負數(shù)(-3)等于加上它的相反數(shù)(+3)。

  教師總結:由(1)、(2)兩式可以看出減法運算可以轉化成加法運算。

有理數(shù)的加法教案4

  一、教學目標

  1、知識與技能

 。1)通過足球賽中的凈勝球數(shù),使學生掌握有理數(shù)加法法則,并能運用法則進行計算;

 。2)在有理數(shù)加法法則的教學過程中,注意培養(yǎng)學生的運算能力。

  2、過程與方法

  通過觀察,比較,歸納等得出有理數(shù)加法法則。能運用有理數(shù)加法法則解決實際問題。

  3、情感態(tài)度與價值觀

  認識到通過師生合作交流,學生主動叁與探索獲得數(shù)學知識,從而提高學生學習數(shù)學的積極性。

  二、教學重難點及關鍵:

  重點:會用有理數(shù)加法法則進行運算、

  難點:異號兩數(shù)相加的法則、

  關鍵:通過實例引入,循序漸進,加強法則的應用。

  三、教學方法

  發(fā)現(xiàn)法、歸納法、與師生轟動緊密結合。

  四、教材分析

  “有理數(shù)的加法”是人教版七年級數(shù)學上冊第一章有理數(shù)的第三節(jié)內(nèi)容,本節(jié)內(nèi)容安排四個課時,本課時是本節(jié)內(nèi)容的第一課時,本課設計主要是通過球賽中凈勝球數(shù)的實例來明確有理數(shù)加法的`意義,引入有理數(shù)加法的法則,為今后學習“有理數(shù)的減法”做鋪墊。

  五、教學過程

 。ㄒ唬﹩栴}與情境

  我們已經(jīng)熟悉正數(shù)的運算,然而實際問題中做加法運算的數(shù)有可能超出正數(shù)范圍。例如,足球循環(huán)賽中,通常把進球數(shù)記為正數(shù),失球數(shù)記為負數(shù),它們的和叫作凈勝球數(shù)。章前言中,紅隊進4個球,失2個球;藍隊進1個球,失1個球。于是紅隊的凈勝球為4+(—2),黃隊的凈勝球為1+(—1),這里用到正數(shù)與負數(shù)的加法。

 。ǘ⿴熒餐骄坑欣頂(shù)加法法則

  前面我們學習了有關有理數(shù)的一些基礎知識,從今天起開始學習有理數(shù)的運算、這節(jié)課我們來研究兩個有理數(shù)的加法、兩個有理數(shù)相加,有多少種不同的情形?為此,我們來看一個大家熟悉的實際問題:

  足球比賽中贏球個數(shù)與輸球個數(shù)是相反意義的量、若我們規(guī)定贏球為“正”,輸球為“負”,打平為“0”、比如,贏3球記為+3,輸1球記為—1、學校足球隊在一場比賽中的勝負可能有以下各種不同的情形:

 。1)上半場贏了3球,下半場贏了1球,那么全場共贏了4球、也就是(+3)+(+1)=+4、

  (2)上半場輸了2球,下半場輸了1球,那么全場共輸了3球、也就是(—2)+(—1)=—3、

  現(xiàn)在,請同學們說出其他可能的情形、

  答:上半場贏了3球,下半場輸了2球,全場贏了1球,也就是(+3)+(—2)=+1;

  上半場輸了3球,下半場贏了2球,全場輸了1球,也就是(—3)+(+2)=—1;

  上半場贏了3球下半場不輸不贏,全場仍贏3球,也就是(+3)+0=+3;

  上半場輸了2球,下半場兩隊都沒有進球,全場仍輸2球,也就是(—2)+0=—2;

  上半場打平,下半場也打平,全場仍是平局,也就是0+0=0、

  上面我們列出了兩個有理數(shù)相加的7種不同情形,并根據(jù)它們的具體意義得出了它們相加的和、但是,要計算兩個有理數(shù)相加所得的和,我們總不能一直用這種方法、現(xiàn)在請同學們仔細觀察比較這7個算式,你能從中發(fā)現(xiàn)有理數(shù)加法的運算法則嗎?也就是結果的符號怎么定?絕對值怎么算?

  這里,先讓學生思考,師生交流,再由學生自己歸納出有理數(shù)加法法則:

  1、同號兩數(shù)相加,取相同的符號,并把絕對值相加;

  2、絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)符號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個數(shù)相加得0;

  3、一個數(shù)同0相加,仍得這個數(shù)。

  (三)應用舉例變式練習

  例1口答下列算式的結果

 。1)(+4)+(+3);(2)(—4)+(—3);(3)(+4)+(—3);(4)(+3)+(—4);

  (5)(+4)+(—4);(6)(—3)+0;(7)0+(+2);(8)0+0、

  學生逐題口答后,師生共同得出:進行有理數(shù)加法,先要判斷兩個加數(shù)是同號還是異號,有一個加數(shù)是否為零;再根據(jù)兩個加數(shù)符號的具體情況,選用某一條加法法則、進行計算時,通常應該先確定“和”的符號,再計算“和”的絕對值、

  例2(教科書的例1)

  解:(1)(—3)+(—9)(兩個加數(shù)同號,用加法法則的第1條計算)

  =—(3+9)(和取負號,把絕對值相加)

  =—12、

 。2)(—4.7)+3.9(兩個加數(shù)異號,用加法法則的第2條計算)

  =—(4.7—3.9)(和取負號,把大的絕對值減去小的絕對值)

  =—0.8

  例3(教科書的例2)教師在算出紅隊的凈勝球數(shù)后,學生自己算黃隊和藍隊的凈勝球數(shù)

  下面請同學們計算下列各題以及教科書第23頁練習第1與第2題

 。1)(—0.9)+(+1.5);(2)(+2.7)+(—3);(3)(—1.1)+(—2.9);

  學生書面練習,四位學生板演,教師巡視指導,學生交流,師生評價。

  (四)小結

  1、本節(jié)課你學到了什么?

  2、本節(jié)課你有什么感受?(由學生自己小結)

 。ㄎ澹┳鳂I(yè)設計

  1、計算:

 。1)(—10)+(+6);

  (2)(+12)+(—4);

 。3)(—5)+(—7);

 。4)(+6)+(+9);

 。5)67+(—73);

 。6)(—84)+(—59);

 。7)—33+48;

 。8)(—56)+37、

  2、計算:

 。1)(—0.9)+(—2.7);

 。2)3.8+(—8.4);

 。3)(—0.5)+3;

 。4)3.29+1.78;

 。5)7+(—3.04);

 。6)(—2.9)+(—0.31)

 。7)(—9.18)+6.18;

 。8)(—0.78)+0、

  3、用“>”或“<”號填空:

 。1)如果a>0,b>0,那么a+b ______0;

 。2)如果a<0,b<0,那么a+b ______0;

  (3)如果a>0,b<0|a|>|b|,那么a+b ______0;

 。4)如果a<0,b>0|a|>|b|,那么a+b ______0

 。┌鍟O計

  1.3.1有理數(shù)加法

一、加法法則二、例1例2例3

有理數(shù)的加法教案5

  學習過程:

  一、自主學習不動筆墨不讀書!請拿出你的筆和你的激情,探究新知:

  1.小學學過的加法運算律有哪些?舉例說明運用運算律有何好處?

  2.加法的交換律:

  兩個數(shù)相加,交換xx的位置,和不變.用式子表示:a+b=。

  3.加法的結合律:

  《1.3.1有理數(shù)的加法》同步練習含答案

  在進行兩個異號有理數(shù)的加法運算時,其計算步驟如下:

 、賹⒔^對值較大的有理數(shù)的符號作為結果的'符號并記住;

 、趯⒂涀〉姆柡徒^對值的差一起作為最終的計算結果;

 、塾幂^大的絕對值減去較小的絕對值;

  ④求兩個有理數(shù)的絕對值;⑤比較兩個絕對值的大小.其中操作順序正確的是( )

  A.①②③④⑤B.④⑤③②①C.①⑤③④②D.④⑤①③②

  《1.3.1有理數(shù)的加法》同步練習題(含答案)

  10.小蟲從某點A出發(fā)在一直線上來回爬行,假定向右爬行的路程記為正數(shù),向左爬行的路程記為負數(shù),爬行的各段路程依次為(單位:cm):+5,-3,+10,-8,-6,+12,-10。

  (1)小蟲最后是否回到出發(fā)點A?

  (2)在爬行過程中,如果每爬行1cm獎勵一粒芝麻,那么小蟲一共得到多少粒芝麻?

  解析(1)是.(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=[(+5)+(+10)+(+12)]+[(-3)+(-8)+(-6)+(-10)]=27-27=0,

  所以小蟲最后回到出發(fā)點A。

  (2)小蟲爬行的總路程為|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm)。

  所以小蟲一共得到54粒芝麻。

有理數(shù)的加法教案6

  【教學目標】

  1、理解有理數(shù)加法的實際意義;

  2、會作簡單的加法計算;

  3、感受到原來用減法算的問題現(xiàn)在也可以用加法算。

  【對話探索設計】

  〖探索1〗

  (1)某倉庫第一天運進300噸化肥,第二天又運進200噸化肥,兩天一共運進多少噸?

 。2)某倉庫第一天運進300噸化肥,第二天運出200噸化肥,兩天總的結果一共運進多少噸?

  (3)某倉庫第一天運進300噸化肥,第二天又運進-200噸化肥,兩天一共運進多少噸?

 。4)把第(3)題的算式列為300+(-200),有道理嗎?

 。5)某倉庫第一天運進a噸化肥,第二天又運進b噸化肥,兩天一共運進多少噸?

  〖探索2〗

  如果物體先向右運動,再向右運動,那么兩次運動后總的結果是什么?

  假設原點為運動起點,用下面的數(shù)軸檢驗你的答案。

  在足球比賽中,通常把進球數(shù)記為正數(shù),失球數(shù)記為負數(shù),它們的和叫做凈勝球數(shù)。若某場比賽紅隊勝黃隊5:2(即紅隊進5個球,失2個球),紅隊凈勝幾個球?

  〖小游戲〗

 。ㄕ堃晃煌瑢W到黑板前)前進5步,又前進-3步,那么兩次運動后總的結果是什么?若是后退-1步,又后退3步呢?

  〖練習〗

  1、登山隊員第一天向上攀登,第二天又向上攀登(天氣惡劣。瑑商煲还蚕蛏吓实嵌嗌倜?

  2、第一天營業(yè)贏利90元,第二天虧本80元,兩天一共贏利多少元?

  〖補充作業(yè)〗

  1、分別用加法和減法的算式表示下面每小題的結果(能求出得數(shù)最好):

 。1)溫度由下降;

  (2)倉庫原有化肥200t,又運進-120t;

 。3)標準重量是,超過標準重量;

  (4)第一天盈利-300元,第二天盈利100元。

  2、借助數(shù)軸用加法計算:

 。1)前進,又前進,那么兩次運動后總的結果是什么?

 。2)上午8時的氣溫是,下午5時的`氣溫比上午8時下降,下午5時的氣溫是多少?

  3、某潛水員先潛入水下,他的位置記為。然后又上升,這時他處在什么位置?

有理數(shù)的加法教案7

  學習目標

  1. 理解有理數(shù)的加法法則.

  2. 能夠應用有理數(shù)的加法法則,將有理數(shù)的加法轉化為非負數(shù)的加減運算.

  3. 掌握異號兩數(shù)的加法運算的規(guī)律.

  [知識講解]

  正有理數(shù)及0的加法運算,小學已經(jīng)學過,然而實際問題中做加法運算的數(shù)有可能超出正數(shù)范圍。例如,足球循環(huán)賽中,可以把進球數(shù)記為正數(shù),失球數(shù)記為負數(shù),它們的和叫做凈勝球數(shù)。如果,紅隊進4個球,失2個球;藍隊進1個球,失1個球.于是紅隊的凈勝球數(shù)為

  4+(-2),

  藍隊的凈勝球數(shù)為

  1+(-1)。

  這里用到正數(shù)和負數(shù)的加法。

  下面借助數(shù)軸來討論有理數(shù)的加法。

  一、負數(shù)+負數(shù)

  如果規(guī)定向東為正,向西為負,那么一個人向西走2米,再向西走3米,兩次共向西走多少米?很明顯,兩次共向西走了6米.

  這個問題用算式表示就是:(-2)+(-4)=-6.

  這個問題用數(shù)軸表示就是如圖1所示:

  二、負數(shù)+正數(shù)

  如果向西走2米,再向東走4米, 那么兩次運動后 這個人從起點向東走2米,寫成算式就是

 。ā2)+4=2。

  這個問題用數(shù)軸表示就是如圖2所示:

  探究

  利用數(shù)軸,求以下情況時這個人兩次運動的結果:

 。ㄒ唬┫认驏|走3米,再向西走5米,物體從起點向()運動了()米;

  (二)先向東走5米,再向西走5米,物體從起點向()運動了()米;

 。ㄈ┫认蛭髯5米,再向東走5米,物體從起點向()運動了()米。 這三種情況運動結果的算式如下:

  3+(—5)= —2;

  5+(—5)= 0;

 。ā5)+5= 0。

  如果這個人第一秒向東(或向西)走5米,第二秒原地不動,兩秒后這個人

  從起點向東(或向西)運動了5米。寫成算式就是

  5+0=5或(—5)+0= —5。

  你能從以上7個算式中發(fā)現(xiàn)有理數(shù)加法的運算法則嗎?

  三、有理數(shù)加法法則

  1. 同號的兩數(shù)相加,取相同的符號,并把絕對值相加.

  2.絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的.絕對值. 互為相反數(shù)的兩個數(shù)相加得零.

  3一個數(shù)同0相加,仍得這個數(shù)。

  四、例題

  例1 計算(-3)+(-9);(2)(-4·7)+3·

  分析:解此題要利用有理數(shù)的加法法則. 解:(1) (-3)+(-9)= -(3+9)= -12:

  (2) (-4·7)+3·9=-(4·7-3·9)= -0·8.

  例2足球循環(huán)賽中,

  紅隊勝黃隊4: 1,黃隊勝藍隊1 :0,藍隊勝紅隊1: 0,計算各隊的凈勝球數(shù)。 解:每個隊的進球總數(shù)記為正數(shù),失球總數(shù)記為負數(shù),這兩數(shù)的和為這隊的凈勝球數(shù)。 三場比賽中,紅隊共進4球,失2球,凈勝球數(shù)為

 。+4)+(—2)=+(4—2)=2;

  黃隊共進2球,失4球,凈勝球數(shù)為

 。+2)+(—4)= —(4—2)= ();藍隊共進()球,失()球,凈勝球數(shù)為

 。ǎ=()。

  五、課堂練習1.填空:

 。1)(-3)+(-5)=;(2)3+(-5)=;

 。3)5+(-3)=;(4)7+(-7)=;

 。5)8+(-1)=;(6)(-8)+1 =;

 。7)(-6)+0 =;(8)0+(-2) =;

  2.計算:

  (1)(-13)+(-18);(2)20+(-14);

 。3)1.7 + 2.8 ;(4)2.3 + (-3.1);

  121)+(-);(6)1+(-1.5); 332

  12(7)(-3.04)+ 6 ;(8)+(-). 23(5)(-

  3.想一想,兩個數(shù)的和一定大于每個加數(shù)嗎?請你舉例說明.

  4. 第23頁練習 1、2。

  課堂練習答案

  1.(1)-8; (2)-2; (3)2; (4)0; (5)7; (6)-7;

  (7)-6; (8)-2.

  2.(1)-31; (2)7; (3)4.5; (4)-0.7; (5)-1 ;

 。6)0 ; (7)2.96; (8)-1. 6

  3.不一定,例如兩個負數(shù)的和小于這兩個加數(shù).

  課外作業(yè):第31頁1題.

  課外選做題

  1.判斷題:

 。1)兩個負數(shù)的和一定是負數(shù);

 。2)絕對值相等的兩個數(shù)的和等于零;

  (3)若兩個有理數(shù)相加時的和為負數(shù),這兩個有理數(shù)一定都是負數(shù);

 。4)若兩個有理數(shù)相加時的和為正數(shù),這兩個有理數(shù)一定都是正數(shù).

  2.當a = -1.6,b = 2.4時,求a+b和a+(-b)的值.

  3.已知│a│= 8,│b│= 2.

  (1)當a、b同號時,求a+b的值;

 。2)當a、b異號時,求a+b的值.

  課外選做題答案

  1.(1)對;(2)錯;(3)錯;(4)錯.

  2.a(chǎn)+b和a+(-b)的值分別為0.8、-4.

  3.(1)當a、b同號時,a+b的值為10或-10;

有理數(shù)的加法教案8

  【教學目標】

  1.進一步理解有理數(shù)加法的實際意義;

  2.經(jīng)歷探索有理數(shù)加法法則的過程,理解有理數(shù)加法法則;

  3.感受數(shù)學模型的思想;

  4.養(yǎng)成認真計算的習慣.

  【對話探索設計】

  〖探索1

  1.第一天贏利,第二天還贏利,兩天合起來算,是贏利還是虧本?

  2.第一天虧本,第二天還是虧本,兩天合起來算,是贏利還是虧本?

  3.一個物體作左右方向的運動,規(guī)定向右為正.如果物體先向左運動5m,再向左運動3m, 那么兩次運動后總的結果是什么?

  假設原點為運動起點,用數(shù)軸檢驗你的答案.

  〖法則理解

  有理數(shù)加法法則第1條是:同號兩數(shù)相加,取___________,并把絕對值_________.

  這條法則包括兩種情況:

  (1)兩個正數(shù)相加,顯然取正號,并把絕對值相加,例(+3)+(+5)=+8;

  (2)兩個負數(shù)相加,取_____號,并把______相加.例如(-3)+(-5) = -(3+5) = -8.答案-8之所以取-號,是因為______________,8是由_____的絕對值和______的絕對值相______而得.

  〖練習

  1.上午6時的氣溫是-5℃,下午5時的氣溫比上午6時下降3℃, 下午5時的氣溫是多少?

  2.第一場比賽紅隊勝黃隊5:2,第二場比賽藍隊勝黃隊3:1, 兩場比賽黃隊凈勝幾個球?

  3.第一天向北走-30km,第二天又向北走-40km,兩天一共向北走多少km?

  4.仿照(-3)+(-5) = -(3+5)= -8的格式解答:

  (1)-10+(-30)=

  (2)(-100)+(-200) =

  (3)(-188)+(-309)=

  〖探索2

  1.第一天營業(yè)贏利90元,第二天虧本80元,兩天一共贏利多少元?如果第二天虧本120元呢?

  2.第一天贏利,第二天虧本,兩天合起來算,是贏利還是虧本?

  3.正數(shù)和負數(shù)相加,結果是正數(shù)還是負數(shù)?

  〖法則理解

  有理數(shù)加法法則第2條的前半部分是:絕對值不相等的異號兩數(shù)相加,取_________________的符號,并用_______________減去_________________.

  例如(+6)+(-2) = +(6-2) = +4.答案+4之所以取+號,是因為兩個加數(shù)(+6與-2)中________的絕對值較大;答案+4的絕對值4是由加數(shù)中較大的絕對值______減去較小的絕對值____得到.

  又例,計算(-8)+(+3)時,先取______號,這是因為兩個加數(shù)中,______的絕對值較大.然后再用較大的絕對值____減去較小的絕對值____,得_____,于是最后得到答案是______.計算的過程可以寫成(-8)+(+3) = -(8-3) = -5.

  〖議一議

  有人說,正數(shù)和負數(shù)相加時,實質(zhì)就是把加法運算轉化為小學的減法運算.他說的對不對?

  〖練習

  1.第一場比賽紅隊勝黃隊5:2,第二場比賽黃隊勝藍隊3:1, 兩場比賽黃隊凈勝幾個球?

  2.如果物體先向右運動5米,再向右運動-8米,那么兩次運動后總的結果是什么?

  3. 檢查3包洗衣粉的'重量(單位:克), 把其中超過標準重量的數(shù)量記為正數(shù),不足的數(shù)量記作負數(shù),結果如下:

  -3.5,+1.2,-2.7.

  這3包洗衣粉的重量一共超過標準重量多少?

  4.仿照(-8)+(+3) =-(8-3) = -5的格式解題:

  (1)(-3)+(+8)=

  (2)-5+(+4)=

  (3)(-100)+(+30)=

  (4)(-100)+(+109)=

  〖法則理解

  有理數(shù)加法法則第2條的后半部分是:互為相反數(shù)的兩個數(shù)相加得_____.

  例如(+3)+(-3) = ______,(-108)+(+108) = ______.

  〖例題學習

  P21.例1,例2

  P22.練習2(按例1格式算.)

  〖作業(yè)

  P29.習題 1, P32.習題 8,9,10

  【備選素材】

  用一個□表示+1,用一個■表示-1.顯然□+■=0,

  (1)■■+□□□=(■+□)+(■+□)+ □=_____.

  這表明-2+3=+(3-2)=1.

  想一想:答案為什么是正的?為什么轉化為減法運算?

  (2)計算■■■■■+□□□□□=_____.

  (3)計算■■■■■+□□=(■■+□□)+ ■■■=______.

  這說明-5+(+2)=-(___-___)=_______.

  (4)計算■■■+□□□□□=?

有理數(shù)的加法教案9

  【教學目標】

  1. 通過學習,能感受到數(shù)學知識來源于生活又可應用于實際生活,激發(fā)學習的興趣。

  2.通過探索,能歸納總結出有理數(shù)加法法則,理解有理數(shù)加法的意義滲透分類思想。

  3.掌握有理數(shù)加法法則,并能準確地進行有理數(shù)加法運算。

  【學習重點、難點】

  重點:了解有理數(shù)加法的意義,會根據(jù)有理數(shù)加法法則進行有理數(shù)加法計算;

  難點:異號兩數(shù)如何相加的法則。

  【學習過程】

  一、 預習自學:

  1.蛋糕店上半年掙5萬,下半年掙3萬,請問一年共掙多少錢?

  2.蛋糕店上半年賠5萬,下半年賠3萬,請問一年共掙多少錢?

  3.蛋糕店上半年掙5萬,下半年賠3萬,請問一年共掙多少錢?

  4.蛋糕店上半年賠5萬,下半年掙3萬,請問一年共掙多少錢?

  5.蛋糕店上半年掙5萬,下半年賠5萬,請問一年共掙多少錢?

  6.蛋糕店上半年賠5萬,下半年掙0萬,請問一年共掙多少錢?

  請你列式計算,并引導學生對前面的七個加法運算進行合理的分類探討:和的符號怎樣確定?和的絕對值怎樣確定?(小組討論展示)

  二、 教師點撥

  知識點一:引導學生對前面的七個加法運算進行合理的分類

  同號兩數(shù)相加: (+5)+(+3)= ______.(-5)+(-3)= ______

  異號兩數(shù)相加:(+5)+(-3)= ______;(-5)+(+3)= ______;

 。ǎ5)+(-5)=______

  一數(shù)與零相加: (-5)+0=______;

  知識點二:探討:和的符號怎樣確定?和的絕對值怎樣確定?

  結論:有理數(shù)加法法則:

  1.同號兩數(shù)相加,取相同的符號,并把絕對值相加。

  2.絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的'符號,并用較大的絕對值減去較小的絕對值;橄喾磾(shù)的兩個數(shù)相加得0。

  3.一個數(shù)同0相加,仍得這個數(shù)。

  三.例題精講;例1(學生自學,教師示范。注意解題步驟)

  四、課堂練習;36頁隨堂練習與習題(小組展示交流)

  五、當堂檢測;

  1.用生活中的事例說明下列算是的意義,并計算出結果:

 。-2)+(-3);(-3)+2

  2.有理數(shù)加法法則:

  絕對值不相等的兩數(shù)相加,取絕對值的加數(shù)的符號,并用較大的絕對值較小的絕對值. 互為相反數(shù)的兩個數(shù)相加得.

  3.計算:(+15)+(-7);(-39)+(-21);

 。-37)+22;(-3)+(+3)

有理數(shù)的加法教案10

  【目標預覽】

  知識技能:1、通過實例,了解有理數(shù)加法的意義,掌握有理數(shù)加法法則,并能運用法則進行計算;

  2、在有理數(shù)加法法則的教學過程中,培養(yǎng)觀察、比較、歸納及運算能力。 數(shù)學思考:1、正確地進行有理數(shù)的加法運算;

  2、用數(shù)形結合的思想方法得出有理數(shù)加法法則。

  解決問題:能運用有理數(shù)加法解決實際問題。

  情感態(tài)度:通過師生活動、學生自我探究,讓學生充分參與到數(shù)學學習的過程中來。

  【教學重點和難點】

  重點:了解有理數(shù)加法的意義,會根據(jù)有理數(shù)加法法則進行有理數(shù)加法計算; 難點:異號兩數(shù)如何相加的法則。

  【情景設計】

  我們來看一個大家熟悉的實際問題:

  足球比賽中進球個數(shù)與失球個數(shù)是相反意義的量.若我們規(guī)定進球為“正”,失球為“負”。比如,進3個球記為正數(shù):+3,失2個球記為負數(shù):-2。它們的'和為凈勝球數(shù):(+3)+(-2)學校足球隊在一場比賽中的勝負情況如下:

  (1)紅隊進了3個球,失了2個球,那么凈勝球數(shù)是:(+3)+(-2)

  (2)藍隊進了1個球,失了1個球,那么凈勝球數(shù)是:(+1)+(-1)

  這里,就需要用到正數(shù)與負數(shù)的加法。

  下面,我們利用數(shù)軸一起來討論有理數(shù)的加法規(guī)律。

  【探求新知】

  一個物體作左右運動,我們規(guī)定向左為負,向右為正。向右運動5m,可以記作多少?向左運動5m呢?

 。1)如果物體先向右運動5m,再向右運動3m,那么兩次運動后總的結果是多少呢? 利用數(shù)軸演示(如圖1),把原點假設為運動起點。

  兩次運動后物體從起點向右運動了8m。寫成算式是:5+3=8①

  利用數(shù)軸依次討論如下問題,引導學生自己尋找算式的答案:

 。2)如果物體先向左運動5m,再向左運動3m,那么兩次運動后總的結果是多少呢?

 。3)如果物體先向右運動5m,再向左運動3m,那么兩次運動后總的結果是多少呢?

 。4)如果物體先向左運動5m,再向右運動3m,那么兩次運動后總的結果是多少呢?

 。5)如果物體先向左運動5m,再向右運動5m,那么兩次運動后總的結果是多少呢?

 。6)如果物體先向右運動5m,再向左運動5m,那么兩次運動后總的結果是多少呢?

 。7)如果物體第一分鐘向右(或向左)運動5m,第二分鐘原地不動,那么兩次運動后總的結果是多少呢?

  總結:依次可得

  (2)(-5)+(-3)=-8②

 。3)5+(-3)=2③

  (4)3+(-5)=-2④

 。5)5+(-5)=0⑤

  (6)(-5)+5=0⑥

 。7)5+0=5或(-5)+0=-5⑦

  觀察上述7個算式,自己歸納出有理數(shù)加法法則:

  1.同號兩數(shù)相加,取相同的符號,并把絕對值相加;

  2.絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)符號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個數(shù)相加得0;

  3.一個數(shù)同0相加,仍得這個數(shù)。

  【范例精析】

  例1計算下列算式的結果,并說明理由:

  (1)(+4)+(+7);(2)(-4)+(-7);

  (3)(+4)+(-7);(4)(+9)+(-4);

  (5)(+4)+(-4);(6)(+9)+(-2);

  (7)(-9)+(+2);(8)(-9)+0;

  (9)0+(+2);(10)0+0.

  學生逐題口答后,教師小結:

  進行有理數(shù)加法,先要判斷兩個加數(shù)是同號還是異號,有一個加數(shù)是否為零;再根據(jù)兩個加數(shù)符號的具體情況,選用某一條加法法則.進行計算時,通常應該先確定“和”的符號,再計算“和”的絕對值.

  解:(1)(-3)+(-9) (兩個加數(shù)同號,用加法法則的第2條計算)

  =-(3+9)(和取負號,把絕對值相加)

  =-12.

  例3 足球循環(huán)比賽中,紅隊勝黃隊4﹕1,黃隊勝藍隊1﹕0,藍隊勝紅隊1﹕0,計算各隊的凈勝球數(shù)。

  解:我們規(guī)定進球為“正”,失球為“負”。它們的和為凈勝球數(shù)。

  三場比賽中,紅隊共進4球,失2球,凈勝球數(shù)為(+4)+(-2)=2;

  黃隊共進2球,失4球,凈勝球數(shù)為(+2)+(-4)= -2;

  藍隊共進1球,失1球,凈勝球數(shù)為(+1)+(-1)=0;

  【一試身手】

  下面請同學們計算下列各題:

  (1)(-0.9)+(+1.5);(2)(+2.7)+(-3); (3)(-1.1)+(-2.9);

  全班學生書面練,四位學生板演,教師對學生板演進行講評.

  【總結陳詞】

  1、這節(jié)課我們從實例出發(fā),經(jīng)過比較、歸納,得出了有理數(shù)加法的法則.今后我們經(jīng)常要用類似的思想方法研究其他問題。

  2、應用有理數(shù)加法法則進行計算時,要同時注意確定“和”的符號,計算“和”的絕對值兩件事。

  【實戰(zhàn)操練】

  1.計算:

  (1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);

  (4)(+6)+(+9);(5)67+(-73);(6)(-84)+(-59);

  (7)33+48;(8)(-56)+37.

  2.計算:

  (1)(-0.9)+(-2.7);(2)3.8+(-8.4);

  (3)(-0.5)+3;(4)3.29+1.78;

  (5)7+(-3.04);(6)(-2.9)+(-0.31);

  (7)(-9.18)+6.18;(8)4.23+(-6.77);(9)(-0.78)+0.

  3.計算:

  4*.用“>”或“<”號填空:

  (1)如果a>0,b>0,那么a+b ______0;

  (2)如果a<0,b<0,那么a+b ______0;

  (3)如果a>0,b<0,|a|>|b|,那么a+b ______0;

  (4)如果a<0,b>0,|a|>|b|,那么a+b ______0.

  5*.分別根據(jù)下列條件,利用|a|與|b|表示a與b的和:

  (1)a>0,b>0;(2) a<0,b<0;

  (3)a>0,b<0,|a|>|b|;(4)a>0,b<0,|a|<|b|.

有理數(shù)的加法教案11

  一、教學內(nèi)容分析

  本節(jié)課是有理數(shù)加法的法則推導和計算,在此基礎上,學生已經(jīng)學過了正數(shù)和負數(shù)的認識及實際表示的意義和有理數(shù)的大小比較。本節(jié)課將在此基礎上授導學生學習有理數(shù)的加法法則,解決同號、異號兩數(shù)相加的計算。

  二、學習者分析

  七年級的學生,其思維已經(jīng)明顯地具備了邏輯思維性,并且學生已經(jīng)在我的要求下,學會了預習、初步養(yǎng)成了預習的習慣,逐漸養(yǎng)成了合作交流的習慣。只要我們教師通過具體的問題的指引、學生小組間的合作和交流,是可以完成本節(jié)課的教學目標的。

  三、教學目標

  1、使學生掌握有理數(shù)加法法則,并能運用法則進行計算;

  2、讓學生親身經(jīng)歷探究有理數(shù)加法法則的過程,深刻感受分類討論、數(shù)形結合的思想,感受由具體到抽象、由特殊到一般的認知規(guī)律;

  3、讓學生通過研討、分類、比較等方法的學習,培養(yǎng)歸納總結知識的能力。

  四、信息技術應用分析

  由于本節(jié)課的知識點是探究有理數(shù)加法法則,要求學生掌握并會運用,所以為了節(jié)省時間和極大的提高學生的學習興趣,選用了多媒體進行教學,把所有的內(nèi)容用電子的白板展示出來。

  五、教學過程

  1、復習提問,引入新知

  通過對小學加法及數(shù)軸知識的應用的復習,讓學生既鞏固了原來所學的知識,又可以引出新課。

  2、出示問題情境、解決新知

  在解決新知的過程中,由于學生利用已有的知識及題目提示,運用學生互相合作交流,并且由各個小組進行展示答案。

  3、探索發(fā)現(xiàn),歸納新知

  利用學生展示的答案,學生分組進行歸納總結,得出有理數(shù)運算法則。

  學生通過合作交流,養(yǎng)成在日常生活中和別人交流合作的好習慣。,通過展示成果培養(yǎng)了學生的.自信心。

  4、展示例題、應用新知

  此環(huán)節(jié)鞏固了所學知識,并且通過本環(huán)節(jié)讓學生體會小組合作的樂趣,體會利用法則解決實際問題的方法。

  5、達標訓練,鞏固新知

  本環(huán)節(jié)進一步鞏固了所學的知識,在互動回答是采用哪個小組舉手多、舉得早,讓哪個小組來回答;讓學生養(yǎng)成一種競爭意識,合作交流意識。

  6、規(guī)律總結,升華新知

  本環(huán)節(jié)著重總結有關有理數(shù)加法法則,讓學生進行小結,逐步養(yǎng)成學生在解決問題時隨時總結規(guī)律的習慣,并對本節(jié)課的知識進行梳理、加深和鞏固。

  7、作業(yè)和運用,拓展新知

  通過作業(yè)學生進一步鞏固所學知識,強化對知識的理解和應用,通過挑戰(zhàn)自我來拓展學生知識面,發(fā)展學生的認識。

有理數(shù)的加法教案12

  教學目標:

  1.知識與技能:使學生理解加減法統(tǒng)一成加法的意義,能準確、熟練地進行加減混合運算,能自覺地運用加法的運算律簡化運算,2.過程與方法:經(jīng)歷加減法統(tǒng)一成加法的過程,體會加法的運算律在運算中的應用

  3.情感、態(tài)度與價值觀:滲透用轉化的思想看問題以及解決問題,鼓勵學生依據(jù)法則簡化運算

  教學重點:

  能準確、熟練地進行加減混合運算,能自覺地運用加法的運算律簡化運算,教學難點:

  準確、熟練地進行加減混合運算

  教學過程

  一、課前預習

  1、有理數(shù)的'加法法則是什么? 2、有理數(shù)的減法法則是什么? 3、有理數(shù)的加法有什么運算律?具體內(nèi)容是什么? 4、計算下列各題(1)(-5)+(-8) (2)(-5)-(-8) (3)(-5)-8 (4)3-12二、自主探索

  根據(jù)有理數(shù)減法法則,有理數(shù)的加減混合運算可以統(tǒng)一為加法運算

  例1、計算(1)14-(-12)+(-25)-17 (2)2+5-8 (3)7-(-4)+(-5) (4)-7.2+4.7-(-8.9)+(-6) (5) - +(- )-(- )-(+ )解: (1) 14-(-12)+(-25)-17 =14+12+(-25)+(-17)---------------------------統(tǒng)一為加法= 26+(-42)---------------------------------------運用運算律=-16 (2) (3)(4) (5)算式(-6)-(-13)+(-5)-(+3)+(+6)是有理數(shù)的加減混合運算,我們還可以按下列步驟進行計算:解:(-6)-(-13)+(-5)-(+3)+(+6)

  =(-6)+(+13)+(-5)+(-3)+(+6)------------統(tǒng)一加號=-6+13-5-3+6----------------------------------------省略加號=-6-5-3+13+6-----------------------------------------運用運算律=-14+19=5說明:省略加號的形式-6+13-5-3+6表示-6,+13,-5,-3,+6這五個數(shù)的和。

  例2.計算:

  (1) -3-5+4 (2)-26+43-24+13-46解:(1) (2)

  例4、若a=-2,b=3,c=-4,求值

  (1)a+b-c (2)-a+b-|c| (3)a-b+c (4)-a-b-c

  解:(1)a+b-c=-2+3-(-4)=-2+3+4=5 ---------- [數(shù)據(jù)代入時,注意括號的運用] (2) (3)(4)

  例5、在伊拉克的戰(zhàn)爭中,謀生化小組沿東西方向路進行檢查,約定向東為正,某天從A地到B地結束時行走記錄為(單位:km) +15,-2,+5,-3,+8,-3,-1,+11,+4,-5,-2,+7,-3,+5問:(1)B地在A地何方,相距多少千米? (2)這小組這一天共走了多少千米

  三、學習小結

  這節(jié)課你學會了哪幾種運算?

  四、隨堂練習

  A類

  1、計算:(1)(-30)-(+24)-(-20)+(-32)-(-32)(2) (-2.1)+(-3.2)-(-2.4)-(-4.3) (3)(+ )-(- )+(- )-(+ ) (4) -7.52+ -1.48

  (5)21-12+33+12-67 (6)-3.2+5.8-8.6+12

  2計算

  (1) 1+2-3-4+5+6-7-8++97+98-99-100

  (2) 66-12+11.3-7.4+8.1-2.5

  (6)-2.7-[3-(-0.6+1.3)]

  B類

  3.計算(1) + + ++ (2) + + ++

有理數(shù)的加法教案13

  師:在小學里,同學們已經(jīng)學過數(shù)的加、減、乘、除四則運算。這些數(shù)是正整數(shù)、正分數(shù)、和零,也就是說,這些運算是在非負有理數(shù)范圍內(nèi)進行的。自從引進負數(shù)后,數(shù)的范圍就擴大到整個有理數(shù)。那么,在有理數(shù)范圍內(nèi),怎樣進行四則運算呢?今天,我們來探索有理數(shù)的加法運算。(教師板書課題:有理數(shù)的加法)

  請同學們思考一下,兩個有理數(shù)進行加法運算時,這兩個加數(shù)的符號可能有哪些情況。

  生1:加數(shù)都是正數(shù)或都是負數(shù)。(教師板書:同號兩數(shù)相加)加數(shù)一正一負(教師板書:異號兩數(shù)相加)

  師:還有其他情況嗎?

  生2:正數(shù)與零,負數(shù)與零,或者兩個都是零

  師:同學們回答得很好。現(xiàn)在讓我們一起來看一個具體問題:某人從一點出發(fā),經(jīng)過下面兩次運動,結果的方向怎樣?離開出發(fā)點的距離是多少?①先向東走了5米,再向東走3米,結果怎樣?

  生3:向東走了8米

  師:如果規(guī)定向東為正,向西為負,同學們能不能用一個數(shù)學式子來表示?生4:表示為(+5)+(+3)=+8(教師板書)師:我們可以畫出示意圖。(教師用投影儀顯示圖1)

 、谙认蛭髯吡耍得,再向西走了3米,結果如何?

  生5:向西走了8米。可以表示為:(-5)+(-3)=-8[教師板書]

 。ń處熡猛队皟x顯示圖2)

 、巯驏|走了5米,再向西走了3米,結果呢?

  生6:向東走了2米。可以表示為:(+5)+(-3)=+2[教師板

 。ń處熡猛队皟x顯示圖3)

  ④先向西走了5米,再向東走了3米,結果呢?

  生7:向西走了2米?梢员硎緸椋海ǎ担ǎ常剑玻ń處煱澹ń處熡猛队皟x顯示圖4)

  ⑤先向東走5米,再向西走5米,結果呢?

  生8:回到原地位置?梢员硎緸椋海ǎ担ǎ担剑埃ń處煱鍟ń處熡猛队皟x顯示圖5)

 、尴认蛭髯撸得祝傧驏|走5米,結果呢?

  生9:仍回到原地位置?梢员硎緸椋海ǎ担ǎ担剑癧教師板書]

  (教師用投影儀顯示圖6)

  師:同學們開動腦筋,完成上面這組問題完成得非常好,我非常高興,請同學們獨立完成下面一組有理數(shù)加法的具體問題,用數(shù)學式子表示出來。(教師用投影儀顯示下面內(nèi)容):

  從河岸現(xiàn)在水位線開始,規(guī)定上升為正,下降為負:

 、偕仙竎m,再上升6cm,結果怎樣?②下降8cm,再下降6cm,結果怎樣?

 、凵仙禼m,再下降8cm,結果怎樣?④下降6cm,再上升8cm,結果怎

 、萆仙竎m,再下降8cm,結果怎樣?⑥下降8cm,再上升0cm,結果怎樣?

  師:下面同學們分組討論,互相訂正。

  教師公布正確答案:

 、偕仙保碿m。 [教師板書(+8)+(+6)=+14]

 、谙陆担保碿m。 [教師板書(-8)+(-6)=-14]

  ③下降2cm。 [教師板書(+6)+(-8)=-2]

 、苌仙瞔m。 [教師板書(-6)+(+8)=+2]

 、莼氐皆痪。 [教師板書(+8)+(-8)=0]

 、拊谠幌戮下8cm。 [教師板書(-8)+0=-8]

  師:通過以上兩組題目,從兩個有理數(shù)相加的過程中你發(fā)現(xiàn)了什么?請同學們發(fā)表演自己的觀點,與本組同學交流。

  小組1:我們這一小組同學發(fā)現(xiàn)了正數(shù)加正數(shù)結果是正數(shù),負數(shù)加負數(shù)結果是負數(shù),也就是說:同號兩數(shù)相加,符號不變。

  師:其他小組還有沒有新的發(fā)現(xiàn)什么?

  小組2:我們發(fā)現(xiàn)符號不同的兩個有理數(shù)相加,結果的符號與最前面加數(shù)的符號一樣。

  師:這一小組的看法是否正確呢?

  小組3:不正確。因為(+6)+(-8)=-2,(-6)+(+8)=+2,結果和符號與第一個加數(shù)的符號不一樣。應改為:符號不同的兩個有理數(shù)相加,結果的符號決定于加數(shù)中較大的數(shù)的符號。

  小組4:這句話也不對,如(+3)+(-5)=-2中,和的符號是負的,但+3比-5大,應改為:和的符號與絕對值大的加數(shù)符號一樣。師:還有沒有不同意見?

  小組5:我們這一小組有不同意見。符號不同的兩個數(shù)相加還有一種可能是相反數(shù)的情況,結果為0與每個的數(shù)的符號都不一樣。

  師:觀察仔細,很好。

  師:剛才同學們只是發(fā)現(xiàn)了兩個有理數(shù)相加,結果的符號問題,結果除了

  符號部分外,另一部分稱為結果的什么?

  眾生:結果的絕對值

  師:結果的絕對值與加數(shù)絕對值又有何關系呢?

  小組5:同號兩數(shù)相加和的絕對值等于加數(shù)絕對值的和,異號兩數(shù)相加和的'絕對值等于較大絕對值減去較小絕對值。

  師:請同學歸納,總結出有理數(shù)的加法規(guī)律。

  小組6:同號兩數(shù)相加,符號不變,并把絕對值相加;異號兩數(shù)相加取絕對值較大加數(shù)的符號,并用較大的絕對值減去較小的絕對值。

  小組7:不對,異號兩數(shù)相加應分兩種情況。⑴絕對值不等的異號兩數(shù)相加;⑵絕對值相等的異號兩數(shù)相加。

  師:很好!同學們已經(jīng)感受到兩個有理數(shù)相加的情況與小學加法要復雜一些,是否還有沒有考慮到的情況呢?

  小組8:有,一個數(shù)同0相加,仍是這個數(shù)。

  師:全班同學共同說出有理數(shù)的加法法則。

  教(板書):有理數(shù)加法法則:

  ①同號兩數(shù)相加,取加數(shù)的符號,并把絕對值相加;

 、诋愄杻蓴(shù)相加,如果絕對值相等和為0;如果絕對值不等,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;

  ③一個數(shù)同0相加,仍是這個數(shù)。

 。c評:學生學習知識是一個動態(tài)的過程。學生認知的效果,完全取決于學生是否以積極的心態(tài)參與認知活動。因此本節(jié)課在教學設計上有如下閃光點:

  1、通過回顧已具備的部分知識與技能,讓學生產(chǎn)生一個暫時成功感和滿足感,達到一個暫時的心理平衡。

  2、以提問的形式展現(xiàn)新矛盾、新問題,挑起學生引起心理的不平衡。旨在誘發(fā)學生好強、好勝的天性,將學生的注意力導向下一個環(huán)節(jié)。

  3、再次以提問的形式,滲透分類的思想,將學生的思維導向分類探索的境地。旨在讓學生的思維能圓潤地過度到探索新知情境之中。

  4、分類展示生活情境,放手讓全體學生感受并探索,從而構建加法法則。)

有理數(shù)的加法教案14

  教學目標:

  1. 知識與技能:使學生理解加減法統(tǒng)一成加法的意義,能準確、熟練地進行加減混合運算,能自覺地運用加法的運算律簡化運算,

  2. 過程與方法:經(jīng)歷加減法統(tǒng)一成加法的過程,體會加法的運算律在運算中的應用

  3. 情感、態(tài)度與價值觀:滲透用轉化的思想看問題以及解決問題,鼓勵學生依據(jù)法則簡化運算

  教學重點:能準確、熟練地進行加減混合運算,能自覺地運用加法的運算律簡化運算,

  教學難點:準確、熟練地進行加減混合運算

  教學過程

  一、課前預習

  1、有理數(shù)的加法法則是什么? 2、有理數(shù)的減法法則是什么? 3、有理數(shù)的加法有什么運算律?具體內(nèi)容是什么? 4、計算下列各題 (1)(-5)+(-8) (2)(-5)-(-8) (3)(-5)-8 (4)3-12

  二、自主探索

  根據(jù)有理數(shù)減法法則,有理數(shù)的加減混合運算可以統(tǒng)一為加法運算

  例1、計算 (1)14-(-12)+(-25)-17 (2)2+5-8 (3)7-(-4)+(-5) (4)-7.2+4.7-(-8.9)+(-6) (5) - +(- )-(- )-(+ ) 解: (1) 14-(-12)+(-25)-17 =14+12+(-25)+(-17)---------------------------統(tǒng)一為加法 = 26+(-42)---------------------------------------運用運算律 =-16 (2) (3)(4) (5)

  算式(-6)-(-13)+(-5)-(+3)+(+6)是有理數(shù)的`加減混合運算,我們還可以按下列步驟進行計算: 解:(-6)-(-13)+(-5)-(+3)+(+6)

  =(-6)+(+13)+(-5)+(-3)+(+6)------------統(tǒng)一加號 =-6+13-5-3+6----------------------------------------省略加號 =-6-5-3+13+6-----------------------------------------運用運算律=-14+19=5 說明: 省略加號的形式-6+13-5-3+6 表示-6,+13,-5 ,-3,+6這五個數(shù)的和。

  例2.計算:

  (1) -3-5+4 (2)-26+43-24+13-46

  解:(1) (2)

  例4、若a=-2,b=3,c=-4,求值

  (1)a+b-c (2)-a+b-|c| (3)a-b+c (4)-a-b-c

  解:(1)a+b-c=-2+3-(-4)=-2+3+4=5 ---------- [ 數(shù)據(jù)代入時,注意括號的運用]

  (2) (3)(4)

  例5、在伊拉克的戰(zhàn)爭中,謀生化小組沿東西方向路進行檢查, 約定向東為正,某天從A地到B地結束時行走記錄為(單位:km)

  +15,-2,+5,-3,+8,-3,-1,+11,+4,-5,-2,+7,-3,+5 問:(1)B地在A地何方,相距多少千米?

  (2)這小組這一天共走了多少千米

  三、學習小結

  這節(jié)課你學會了哪幾種運算?

  四、隨堂練習

  A類

  1、計算: (1)(-30)-(+24)-(-20)+(-32)-(-32)(2) (-2.1)+(-3.2)-(-2.4)-(-4.3)

  (3)(+ )-(- )+(- )-(+ ) (4) -7.52+ -1.48

  (5)21-12+33+12-67 (6)-3.2+5.8-8.6+12

  2 計算

  (1) 1+2-3-4+5+6-7-8++97+98-99-100

  (2) 66-12+11.3-7.4+8.1-2.5

  (6)-2.7-[3-(-0.6+1.3)]

  B類

  3. 計算 (1) + + ++ (2) + + ++

有理數(shù)的加法教案15

  教學目標:

  1、知識與技能:理解有理數(shù)加法的運算律,能熟練地運用運算律簡化有理數(shù)加法的運算,能靈活運用有理數(shù)的加法解決簡單實際問題。

  2、過程與方法:經(jīng)過有理數(shù)加法運算律的探索過程,了解加法的運算律,能用運算律簡化運算。

  重點、難點:

  1、重點:運算律的理解及合理、靈活的運用。

  2、難點:合理運用運算律。

  教學過程:

  一、創(chuàng)設情景,導入新課

  1、敘述有理數(shù)的加法法則。

  2、有理數(shù)加法與小學里學過的數(shù)的加法有什么區(qū)別和聯(lián)系?

  答:進行有理數(shù)加法運算,先要根據(jù)具體情況正確地選用法則,確定和的符號,這與小學里學過的數(shù)的加法是不同的;而計算和的絕對值,用的是小學里學過的加法或減法運算。

  二、合作交流,解讀探究

  1、計算下列各題,并說明是根據(jù)哪一條運算法則?

 。1)(—9.18)+6.18;

(2)6.18+(—9.18);

(3)(—2.37)+(—4.63)

  2、計算下列各題:

 。1)+(—4);

(2)8+;

 。3)+(—11);

(4)(—7)+;

  (5)+(+27);

(6)(—22)+。

  通過上面練習,引導學生得出:

  交換律兩個有理數(shù)相加,交換加數(shù)的`位置,和不變。

  用代數(shù)式表示上面一段話:

  a+b=b+a

  運算律式子中的字母a,b表示任意的一個有理數(shù),可以是正數(shù),也可以是負數(shù)或者零。在同一個式子中,同一個字母表示同一個數(shù)。

  結合律三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。

  用代數(shù)式表示上面一段話:

 。╝+b)+c=a+(b+c)

  這里a,b,c表示任意三個有理數(shù)。

  根據(jù)加法交換律和結合律可以推出:三個以上的有理數(shù)相加,可以任意交換加數(shù)的位置,也可以先把其中的幾個數(shù)相加。

  三、應用遷移,鞏固提高

  例(P22例3)計算:

 。1)33+(—2)+7+(—8)

 。2)4.375+(—82)+(—4.375)

  引導學生發(fā)現(xiàn),在本例中,把正數(shù)與負數(shù)分別結合在一起再相加,有相反數(shù)的先把相反數(shù)相加;能湊整的先湊整;有分母相同的,先把同分母的數(shù)相加,計算就比較簡便。

  本例先由學生在筆記本上解答,然后教師根據(jù)學生解答情況指定幾名學生板演,并引導學生發(fā)現(xiàn),簡化加法運算一般是三種方法:首先消去互為相反數(shù)的兩數(shù)(其和為0),同號結合或湊整數(shù)。

  例2(P23例4)

  教師通過啟發(fā),由學生列出算式,再讓學生思考,如何應用運算律,使計算簡便。第一問可以讓學生自已作行程示意圖幫助理解,注意第一問和第二問的區(qū)別。

  練習課本P23練習:1、2

  四、總結反思

  本節(jié)課你有哪些收獲?

  五、作業(yè)

  1、課本P27習題1.4A組第3、4題

  2、課本P28習題1.4B組第12題

【有理數(shù)的加法教案】相關文章:

有理數(shù)的加法教案03-23

《有理數(shù)加法》教案08-29

有理數(shù)的加法教案15篇(精選)07-31

有理數(shù)加法教學反思04-22

有理數(shù)的加法教學反思07-16

有理數(shù)加法的教學反思簡短01-01

進位加法教案02-28

小學加法教案03-05

加法與減法教案05-08