丁香花无码AV在线,欧美日韩国产色,年轻人手机在线免费视频,伊人成人在线,可以直接免费观看的av网站,日本三级香港三级人妇99,亚洲免费二区

《完全平方公式》教案

時間:2024-07-13 17:06:48 教案 我要投稿

《完全平方公式》教案實用[15篇]

  作為一名教師,常常需要準備教案,教案是教學(xué)活動的總的組織綱領(lǐng)和行動方案。那么什么樣的教案才是好的呢?以下是小編為大家整理的《完全平方公式》教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

《完全平方公式》教案實用[15篇]

《完全平方公式》教案1

  完全平方公式(教案) 賈村中學(xué) 聶盼山

  一、教學(xué)目標

 。1) (1) 知識與技能;學(xué)生通過推導(dǎo)完全平方公式,掌握公式結(jié)構(gòu),能計算,數(shù)學(xué)教案-完全平方公式(教案)。

 。2) (2) 過程與方法目標;學(xué)生探究完全平方公式,體會數(shù)形結(jié)合。

  二、教學(xué)重點;公式結(jié)構(gòu)及運用。

  三、教學(xué)難點;公式中字母AB的含義理解與公式正確運用。

  四、教具;自制長方形、正方形卡片

  五、教學(xué)過程;

  教師活動

  學(xué)生活動

  1、 1、 創(chuàng)設(shè)情景,提出問題,引入課題

  (1) (1) 想一想

  一位老人很喜歡孩子,每當(dāng)孩子到他家做客時,老人都拿出糖招待他們,來了幾個孩子老人就會每個孩子幾塊糖。

 。1) (1) 第一天,a個男孩去看老人,老人共給他們幾塊糖?

  (2) (2) 第二天,個女孩子去看望老人,老人共給他們多少塊糖?

  (3) (3) 第三天,( )個孩子一起去看望老人,老人共給他們多少塊糖?

  (4) (4) 第三天比前二天的孩子得到糖總數(shù)哪個多?多多少?為什么?(分組討論)

  1、 1、 學(xué)生四人一組討論。

  填空:

 。1)第一天給孩子 塊糖。

 。2)第二天給孩子 塊糖。

  (3)第三天給孩子 塊糖。

  男孩子第三天多得 塊糖

  女孩第三天多得 塊糖。

  教師活動

  學(xué)生活動

 。2) (2) 做一做、請同學(xué)拼圖

  a

  教師巡視指導(dǎo)學(xué)生拼圖

  2、 2、 教師提問:

  (1)、大正方形邊長?(2)每一塊卡片的面積是多少?(3)用不同形式表示正方形總面積,比較發(fā)現(xiàn)什么?

  3、 3、 想一想

 。1)(a +b )用多項式乘法法則說明

 。ǎ玻 a -b )

  4、請同學(xué)們自己敘述上面的等式

 。、說一說,a b能表示什么?

 。ā酰穑 □+2□○+○

  6、算一算

 。ǎ保ǎ玻兀常ǎ玻ǎ矗兀担伲

  請同學(xué)們分清a b

 。、練一練

  (1)(2X-3Y) (2)(2XY-3X)

 。浮⒃囈辉嚕ǎ幔猓悖

  作業(yè):P135 1、2

  學(xué)生2人一組拼圖交流

  2、學(xué)生觀察思考

  (1) (1) 大正方形邊長?

  (2) (2) 四塊卡片的面積分別是

 。ǎ常 (3) 大正方形的總面積是多少?

 。、(1)學(xué)生運用多項式乘法法則推導(dǎo)

  (a+b)=a+2ab+b說出每一步運算理由

 。ǎ玻⿲W(xué)生自己探究交流

 。础W(xué)生用語言敘述公式

 。、師生共同a、b對應(yīng)項 教師書寫

 。丁W(xué)生獨立完成練一練展示結(jié)果

 。贰W(xué)生四人一組討論交流

 。、有興趣的同學(xué)可以探

  完全平方公式(教案) 賈村中學(xué) 聶盼山

  一、教學(xué)目標

 。1) (1) 知識與技能;學(xué)生通過推導(dǎo)完全平方公式,掌握公式結(jié)構(gòu),能計算。

 。2) (2) 過程與方法目標;學(xué)生探究完全平方公式,體會數(shù)形結(jié)合。

  二、教學(xué)重點;公式結(jié)構(gòu)及運用。

  三、教學(xué)難點;公式中字母AB的含義理解與公式正確運用。

  四、教具;自制長方形、正方形卡片

  五、教學(xué)過程;

  教師活動

  學(xué)生活動

  1、 1、 創(chuàng)設(shè)情景,提出問題,引入課題

 。1) (1) 想一想

  一位老人很喜歡孩子,每當(dāng)孩子到他家做客時,老人都拿出糖招待他們,來了幾個孩子老人就會每個孩子幾塊糖。

 。1) (1) 第一天,a個男孩去看老人,老人共給他們幾塊糖?

 。2) (2) 第二天,個女孩子去看望老人,老人共給他們多少塊糖?

 。3) (3) 第三天,( )個孩子一起去看望老人,老人共給他們多少塊糖?

 。4) (4) 第三天比前二天的孩子得到糖總數(shù)哪個多?多多少?為什么?(分組討論)

  1、 1、 學(xué)生四人一組討論,初中數(shù)學(xué)教案《數(shù)學(xué)教案-完全平方公式(教案)》。

  填空:

 。1)第一天給孩子 塊糖。

 。2)第二天給孩子 塊糖。

 。3)第三天給孩子 塊糖。

  男孩子第三天多得 塊糖

  女孩第三天多得 塊糖。

  教師活動

  學(xué)生活動

 。2) (2) 做一做、請同學(xué)拼圖

  a

  教師巡視指導(dǎo)學(xué)生拼圖

  2、 2、 教師提問:

  (1)、大正方形邊長?(2)每一塊卡片的面積是多少?(3)用不同形式表示正方形總面積,比較發(fā)現(xiàn)什么?

  3、 3、 想一想

 。1)(a +b )用多項式乘法法則說明

  (2)( a -b )

 。础⒄埻瑢W(xué)們自己敘述上面的等式

 。、說一說,a b能表示什么?

 。ā酰穑 □+2□○+○

  6、算一算

 。ǎ保ǎ玻兀常ǎ玻ǎ矗兀担伲

  請同學(xué)們分清a b

  7、練一練

  (1)(2X-3Y) (2)(2XY-3X)

 。浮⒃囈辉嚕ǎ幔猓悖

  作業(yè):P135 1、2

  學(xué)生2人一組拼圖交流

 。、學(xué)生觀察思考

 。ǎ保 (1) 大正方形邊長?

  (2) (2) 四塊卡片的面積分別是

 。ǎ常 (3) 大正方形的總面積是多少?

 。、(1)學(xué)生運用多項式乘法法則推導(dǎo)

 。ǎ幔猓剑幔玻幔猓庹f出每一步運算理由

 。ǎ玻⿲W(xué)生自己探究交流

 。、學(xué)生用語言敘述公式

 。怠熒餐、b對應(yīng)項 教師書寫

  6、學(xué)生獨立完成練一練展示結(jié)果

 。、學(xué)生四人一組討論交流

  8、有興趣的同學(xué)可以探

  完全平方公式(教案) 賈村中學(xué) 聶盼山

  一、教學(xué)目標

  (1) (1) 知識與技能;學(xué)生通過推導(dǎo)完全平方公式,掌握公式結(jié)構(gòu),能計算。

 。2) (2) 過程與方法目標;學(xué)生探究完全平方公式,體會數(shù)形結(jié)合。

  二、教學(xué)重點;公式結(jié)構(gòu)及運用。

  三、教學(xué)難點;公式中字母AB的含義理解與公式正確運用。

  四、教具;自制長方形、正方形卡片

  五、教學(xué)過程;

  教師活動

  學(xué)生活動

  1、 1、 創(chuàng)設(shè)情景,提出問題,引入課題

 。1) (1) 想一想

  一位老人很喜歡孩子,每當(dāng)孩子到他家做客時,老人都拿出糖招待他們,來了幾個孩子老人就會每個孩子幾塊糖。

 。1) (1) 第一天,a個男孩去看老人,老人共給他們幾塊糖?

 。2) (2) 第二天,個女孩子去看望老人,老人共給他們多少塊糖?

 。3) (3) 第三天,( )個孩子一起去看望老人,老人共給他們多少塊糖?

 。4) (4) 第三天比前二天的孩子得到糖總數(shù)哪個多?多多少?為什么?(分組討論)

  1、 1、 學(xué)生四人一組討論。

  填空:

 。1)第一天給孩子 塊糖。

 。2)第二天給孩子 塊糖。

 。3)第三天給孩子 塊糖。

  男孩子第三天多得 塊糖

  女孩第三天多得 塊糖。

  教師活動

  學(xué)生活動

  (2) (2) 做一做、請同學(xué)拼圖

  a

  教師巡視指導(dǎo)學(xué)生拼圖

  2、 2、 教師提問:

  (1)、大正方形邊長?(2)每一塊卡片的.面積是多少?(3)用不同形式表示正方形總面積,比較發(fā)現(xiàn)什么?

  3、 3、 想一想

 。1)(a +b )用多項式乘法法則說明

  (2)( a -b )

 。、請同學(xué)們自己敘述上面的等式

 。、說一說,a b能表示什么?

 。ā酰穑 □+2□○+○

 。丁⑺阋凰

 。ǎ保ǎ玻兀常ǎ玻ǎ矗兀担伲

  請同學(xué)們分清a b

  7、練一練

  (1)(2X-3Y) (2)(2XY-3X)

 。浮⒃囈辉嚕ǎ幔猓悖

  作業(yè):P135 1、2

  學(xué)生2人一組拼圖交流

  2、學(xué)生觀察思考

 。ǎ保 (1) 大正方形邊長?

 。ǎ玻 (2) 四塊卡片的面積分別是

  (3) (3) 大正方形的總面積是多少?

  3、(1)學(xué)生運用多項式乘法法則推導(dǎo)

 。ǎ幔猓剑幔玻幔猓庹f出每一步運算理由

 。ǎ玻⿲W(xué)生自己探究交流

  4、學(xué)生用語言敘述公式

 。、師生共同a、b對應(yīng)項 教師書寫

 。、學(xué)生獨立完成練一練展示結(jié)果

 。、學(xué)生四人一組討論交流

 。、有興趣的同學(xué)可以探

《完全平方公式》教案2

  教學(xué)過程

  一、議一議

  探索單項式除以單項式法則(出示投影1)計算下列各題,并說說你的理由 1. x yx , (8m n )(2m n) , (a b c)(3a b)。師生共同分析:此題是做除法運算,可以從兩方面思考:根據(jù)除法是乘法的逆運算,將除法問題轉(zhuǎn)化為乘法問題去解決,即( )x = x y,由單項式乘以單項式法則可得(x y)x = x y,因此,x yx =x y 。 另外,根據(jù)同底數(shù)冪的除法法則,由約分也可得 =x y.學(xué)生動筆:寫出(2)(3)題的結(jié)果。 教師板書: x yx =x y, (8m n )(2m n)=4n , (a b c)(3a b)= a bc師:以上運算是單項式除以單項式的運算,你能說說如何進行單項式除以單項式的運算?學(xué)生活動:小組討論,教師引導(dǎo)學(xué)生從系數(shù)、同底數(shù)冪、只在被除式含有的字母三方面思考,討論充分后,由一名同學(xué)敘述,其余同學(xué)補充糾正。出示單項式除法法則(投影顯示)單項式相除,把系數(shù)、同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式。

  二、做一做

  鞏固新知例1計算1.(- x y )(3 x y) 2.(10a b c )(5a bc)3.(2x y) (-7xy )(14 x y ) 4.(2a+b) (2a+b) 學(xué)生活動:在練習(xí)本上計算。教師引導(dǎo)學(xué)生按法則進行運算,首先確定它們的系數(shù),把系數(shù)的商作為商的系數(shù),其次確定相同的字母,在被除式中出現(xiàn)的字母作為商中可能含有的字母,相同字母的'指數(shù)之差作為商式中對應(yīng)字母的指數(shù),只在被除式中含有的字母指數(shù)不變,最后化簡。第(1)(2)題對照法則進行,第(3)題要按運算順序進行。第(4)題先把(2a+b)看作一個整體 (一個字母)相除,后用完全平方公式計算。教師板書如下:解: 1.(- x y )(3 x y) 2.(10a b c )(5a bc)=(- 3)x y =(105)a b c =- y =2ab c 3.(2x y) (-7xy )(14 x y ) 4.(2a+b) (2a+b) =8x y (-7xy )(14 x y ) =(2a+b) =-56x y (14 x y ) =(2a+b) =-4x y =4a +4ab+b

  三、隨堂練習(xí)

  P40 1學(xué)生活動:讓四名同學(xué)到黑板板演,其余同學(xué)在練習(xí)本上計算,同伴可交流,互相訂正。教師巡回檢查,對存在問題及時更正。待四名板演同學(xué)完成后,師生共同訂正。

  四、小結(jié)

  本節(jié)課主要學(xué)習(xí)了單項式除以單項式的運算。在運用法則計算時應(yīng)注意以下幾點:

  1、系數(shù)相除與同底數(shù)冪相除的區(qū)別;

  2、符號問題;

  3、指數(shù)相同的同底數(shù)冪相除商為1而不是0;4.在混合運算中,要注意運算的順序。五、作業(yè)課本習(xí)題1.15.P41 1、2. 3

《完全平方公式》教案3

  課題教案:完全平方公式

  學(xué)科:數(shù)學(xué)

  年級:七年級

  1內(nèi)容本節(jié)課的主題:通過一系列的探究活動,引導(dǎo)學(xué)生從計算結(jié)果中總結(jié)出完全平方公式的兩種形式。

  1.1以教材作為出發(fā)點,依據(jù)《數(shù)學(xué)課程標準》,引導(dǎo)學(xué)生體會、參與科學(xué)探究過程。使學(xué)生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實踐能力等方面的發(fā)展。

  1.2用標準的數(shù)學(xué)語言得出結(jié)論,使學(xué)生感受科學(xué)的嚴謹,啟迪學(xué)生的數(shù)學(xué)思維。

  2教學(xué)目標

  2.1知識目標:會推導(dǎo)完全平方公式,并能運用公式進行簡單的計算;了解(a+b)2=a2+2ab+b2的幾何背景。

  2.2技能目標:經(jīng)歷由一般的多項式乘法向乘法公式過渡的探究過程,進一步培養(yǎng)學(xué)生歸納總結(jié)的能力,并給公式的應(yīng)用打下堅實的基礎(chǔ)。

  2.3情感與態(tài)度目標:通過觀察、實驗、歸納、類比、推斷獲得數(shù)學(xué)猜想,體驗數(shù)學(xué)活動充滿著探索性和創(chuàng)造性,感受證明的必要性、證明過程的嚴謹性以及結(jié)論的確定性。

  3教學(xué)重點完全平方公式的'準確應(yīng)用。

  4教學(xué)難點掌握公式中字母表達式的意義及靈活運用公式進行計算。

  5教育理念和教學(xué)方式

  5.1教學(xué)是師生交往、積極互動、共同發(fā)展的過程。教師是學(xué)生學(xué)習(xí)的組織者、促進者、合作者:本節(jié)的教學(xué)過程,要為學(xué)生的動手實踐,自主探索與合作交流提供機會,搭建平臺;尊重和自己意見不一致的學(xué)生,贊賞每一位學(xué)生的結(jié)論和對自己的超越,尊重學(xué)生的個人感受和獨特見解;幫助學(xué)生發(fā)現(xiàn)他們所學(xué)東西的個人意義和社會價值,通過恰當(dāng)?shù)慕虒W(xué)方式引導(dǎo)學(xué)生學(xué)會自我調(diào)適,自我選擇。

  學(xué)生是學(xué)習(xí)的主人,在教師指導(dǎo)下主動的、富有個性的學(xué)習(xí),用自己的身體去親自經(jīng)歷,用自己的心靈去親自感悟。

  5.2采用“問題情景—探究交流—得出結(jié)論—強化訓(xùn)練”的模式展開教學(xué)。充分利用動手實踐的機會,盡可能增加教學(xué)過程的趣味性,強調(diào)學(xué)生的動手操作和主動參與,通過豐富多彩的集體討論、小組活動,以合作學(xué)習(xí)促進自主探究。

  6具體教學(xué)過程設(shè)計如下:

  6.1提出問題:[引入]同學(xué)們,前面我們學(xué)習(xí)了多項式乘多項式法則和合并同類項法則,你會計算下列各題嗎?

  (x+3)2=,(x-3)2=,

  這些式子的左邊和右邊有什么規(guī)律?再做幾個試一試:

  (2m+3n)2=,(2m-3n)2=

  6.2分析問題

  6.2.1[學(xué)生回答]分組交流、討論 多項式的結(jié)構(gòu)特點

 。1)原式的特點。兩數(shù)和的平方。

 。2)結(jié)果的項數(shù)特點。等于它們平方的和,加上它們乘積的兩倍

  (3)三項系數(shù)的特點(特別是符號的特點)。

  (4)三項與原多項式中兩個單項式的關(guān)系。

  6.2.2[學(xué)生回答]總結(jié)完全平方公式的語言描述:

  兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;

  兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。

  6.2.3、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達式:

  (a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.

  6.3運用公式,解決問題

  6.3.1口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)

  (m+n)2=, (m-n)2=,

  (-m+n)2=, (-m-n)2=,

  6.3.2小試牛刀

  ①(x+y)2=;②(-y-x)2=;

 、(2x+3)2=;④(3a-2)2=;

  6.4學(xué)生小結(jié):你認為完全平方公式在應(yīng)用過程中,需要注意那些問題?

  (1)公式右邊共有3項。

  (2)兩個平方項符號永遠為正。

  (3)中間項的符號由等號左邊的兩項符號是否相同決定。

  (4)中間項是等號左邊兩項乘積的2倍。

  6.5[作業(yè)]P34隨堂練習(xí)P36習(xí)題

《完全平方公式》教案4

  一、教學(xué)目標:

  經(jīng)歷探索完全平方公式的過程,進一步發(fā)展符號感和推理能力;在變式中,拓展提高;通過積極參與數(shù)學(xué)學(xué)習(xí)活動,培養(yǎng)學(xué)生自主探究能力,勇于創(chuàng)新的精神和合作學(xué)習(xí)的習(xí)慣;重點是正確理解完全平方公式(a±b)2=a2±2ab+b2,并初步運用;難點是完全平方公式的運用。

  二、教學(xué)過程:

  1.檢查學(xué)生的“預(yù)習(xí)知識樹”,導(dǎo)入課題:

  師:前面學(xué)習(xí)了平方差公式,同學(xué)們對平方差公式的結(jié)構(gòu)特點、運用以及學(xué)習(xí)公式的意義有了初步的認識。今天,我們繼續(xù)學(xué)習(xí)、研究另一種“乘法公式”――完全平方公式。請拿出你的“預(yù)習(xí)知識樹”,小組內(nèi)互查并交流,在預(yù)習(xí)中有疑問的同學(xué)請詢問。

  (活動:老師巡視、檢查學(xué)生的預(yù)習(xí)情況,并解答學(xué)生在預(yù)習(xí)中存在的問題)生:(互查、討論“預(yù)習(xí)知識樹”,有問題的詢問問題。)師:(老師點評學(xué)生預(yù)習(xí)情況,并出示老師做的“知識樹”,引出課題:完全平方公式。)說明:把預(yù)習(xí)提到課前,利用“知識樹”引導(dǎo)學(xué)生自學(xué),學(xué)生可以獨立思考、自主學(xué)習(xí),也可合作交流、討論研究,這樣預(yù)習(xí)會更充分,聽講時就能有準備、有選擇;一上課,老師就檢查“預(yù)習(xí)知識樹”,了解學(xué)生新課學(xué)習(xí)情況,適當(dāng)點撥,在課堂上留出更多的時間大量拓展、提高,發(fā)展學(xué)生的能力。

  2.自學(xué)檢測,制造通用工具:師:下面進行自學(xué)檢測.計算:⑴(x+3)2;⑵(2x-5)2;⑶(mn+t)2;⑷(-4x+y2)2。

  (活動:投影顯示練習(xí)題。)生:(四人到黑板上板演,答錯了,由學(xué)生糾正,老師再點評。)師:觀察練習(xí),公式中的.a、b可代表什么?

  生:可以表示一個數(shù),也可以表示一個單項式、多項式。

  說明:點評時,老師反復(fù)引導(dǎo)學(xué)生分清題目中哪部分相當(dāng)于公式中的a,哪部分相當(dāng)于公式中的b,就是讓學(xué)生明確“公式中的a、b可表示數(shù),也可表示一個單項式、多項式或其他的式子”的變化規(guī)律,即制造通用工具。在前面學(xué)習(xí)平方差公式時,學(xué)生應(yīng)該認識到這個道理,在這里再次強化。

  師:說得非常好,明確“公式中的a、b可以表示一個數(shù),也可以表示一個單項式、多項式”的變化規(guī)律,就能正確運用公式解題了。顯然,剛做的練習(xí)題是由公式變化來的,若是變下去,能變多少道題?

  生:無數(shù)道。師:最終是幾道題?生:一道。說明:這就是老師的“暗線”語言,引導(dǎo)學(xué)生明白從公式出發(fā),反映在a、b上只是取值不同,可以演變出無數(shù)道題,是“解壓”的過程,最終還是利用公式解題,所有的題目只有“一道”,只是形式不同,這又是“壓縮”的過程,把握了變化規(guī)律才能更好地解題。

  師:你會變了嗎?請各小組編題。(活動:四人小組先在組內(nèi)討論、交流,再推選完成最快的兩個小組出示題目,其他小組同學(xué)練習(xí)。)說明:引導(dǎo)學(xué)生現(xiàn)場出題,一是激發(fā)學(xué)生興趣、活躍氣氛,二是驗證變化規(guī)律。

  師:下面思考,如何計算:(a+b+c)2生1:可根據(jù)多項式乘以多項式來計算,就是把(a+b+c)2看做(a+b+c)(a+b+c)。

  師:不錯。還有其他方法嗎?生2:也可以把其中的(a+b)兩項看成一項,變成[(a+b)+c]2的形式,就能直接運用完全平方公式了。

  師:說得非常好。兩種方法都可以,但哪種更簡單呢?請你任選一種,完成練習(xí)。

  生:(緊張地做題,同時找兩個學(xué)生到黑板上板演。)師:這道題若是變?yōu)?a+b+c+d)2,你會做嗎?

  生:(齊答)會。師:怎么辦?生1:把其中(a+b)看做一項,(c+d)看做一項,還是利用完全平方公式解題。

  生2:還有其他分組方式,如把(a+c)看做一項,(b+d)看做一項,也能直接運用公式解題。

  師:方法一樣嗎?生:一樣的。師:還能變下去嗎?這樣可以變出多少道題?

  生:無數(shù)道。師:最終是幾道題?生:(齊答)一道題。師:現(xiàn)在,老師相信每個學(xué)生都會解這樣的題了。課下,請同學(xué)們思考:如果把(a+b)2的指數(shù)變化一下,又可以變出多少道題,你能計算出來嗎?

  (活動:投影顯示一組題目,如(a+b)3、(a+b)4……)說明:這就是老師進一步利用這個例子論證“公式中的a、b可表示數(shù),也可表示一個單項式、多項式或其他的式子”的變化規(guī)律。

  3.通過大量的習(xí)題驗證通用工具,學(xué)生并且自造通用工具。

  師:通過前面的檢測,看出同學(xué)們已經(jīng)基本掌握了完全平方公式。下面進入達標檢測。

  (活動:投影顯示達標檢測題)1.填空:

 、(2x+3y)2=______;②(14a-1)2=116a2-____+1;③當(dāng)x=5,y=2,則(x+y)(x-y)-(x-y)2=_________。

  2.計算:

  ①(-2m-n)2;②(2-3a2)(3a2-2);③(-cd+12)2;④(n+3)2-n23.計算:(x+2y+3)(x+2y-3)生:(積極、主動地在作業(yè)本上完成上面練習(xí)題。)師:(巡視,批閱完成快的學(xué)生的作業(yè),最后集體點評,只講不會的。)說明:第2①題,可先變形為[-(2m+n)]2,再按(a+b)2的公式展開,也可直接理解成-2m與n的差,按(a-b)2計算;第2②題將(2-3a2)變形為-(3a2-2),原式可轉(zhuǎn)化為-(3a2-2)2,直接運用公式計算;第2④題把(n+3)看做a

  、n看做b,逆用平方差公式也是一種解法,同時訓(xùn)練學(xué)生的逆向思維;第3題是下節(jié)課訓(xùn)練內(nèi)容,在這里可以提前,引導(dǎo)學(xué)生通過變形,得出(x+2y+3)(x+2y-3)=[(x+2y)+3][(x+2y)-3]=(x+2y)2-32=x2+4xy+4y2-9,這里還是把(x+2y)看做a、3看做b,進一步驗證了“通用工具”,即“解決某一類問題的一種思維方式或方法”。拓展提高還是在“變”上下功夫,要求學(xué)生能較熟練掌握,逐步達到腦算的層次,水到渠成,能力自然提高,學(xué)生就會自造“通用工具”了。

  4.嫁接“知識樹”,推薦作業(yè)。師:本節(jié)課你有什么收獲?還有什么問題嗎?

  (活動:再次投影本節(jié)課“知識樹”。)生:這節(jié)課我們學(xué)習(xí)、研究了完全平方公式(a±b)2=a2±2ab+b2,知道了公式中a、b,可以是單項式也可以是多項式,能運用公式解題了,能力上又有新的提高.師:課下完成本節(jié)課的作業(yè).[投影顯示]思考題:計算(a+b+c)2、(a+b+c+d)2的結(jié)果,觀察有什么規(guī)律,感興趣的同學(xué)還可計算(a+b)3、(a+b)4的結(jié)果,你又能發(fā)現(xiàn)什么規(guī)律.預(yù)習(xí)指導(dǎo):①課本第38-39頁內(nèi)容,重點研究例3兩個題目的解題方法,能嘗試獨自解答課后隨堂練習(xí)或習(xí)題,②設(shè)計下節(jié)課“知識樹”,優(yōu)化本單元“知識樹”。說明:本環(huán)節(jié)是將本節(jié)課“知識樹”

  移植到乘法公式的單元“知識樹”上,整體構(gòu)建知識,同時更加強化了學(xué)生的“能力樹”。作業(yè)是推薦性的作業(yè),達標檢測就是“堂堂清”,學(xué)生課下只須做好預(yù)習(xí)作業(yè)就行了,這樣會有更多自由安排的時間,發(fā)展個性。

《完全平方公式》教案5

  總體說明:

  完全平方公式則是對多項式乘法中出現(xiàn)的較為特殊的算式的一種歸納、總結(jié).同時,完全平方公式的推導(dǎo)是初中數(shù)學(xué)中運用推理方法進行代數(shù)式恒等變形的開端,通過完全平方公式的學(xué)習(xí)對簡化某些整式的運算、培養(yǎng)學(xué)生的求簡意識有較大好處.而且完全平方公式是后繼學(xué)習(xí)的必備基礎(chǔ),不僅對學(xué)生提高運算速度、準確率有較大作用,更是以后學(xué)習(xí)分解因式、分式運算、解一元二次方程以及二次函數(shù)的恒等變形的重要基礎(chǔ),同時也具有培養(yǎng)學(xué)生逐漸養(yǎng)成嚴密的邏輯推理能力的作用.因此學(xué)好完全平方公式對于代數(shù)知識的后繼學(xué)習(xí)具有相當(dāng)重要的意義.

  本節(jié)是北師大版七年級數(shù)學(xué)下冊第一章《整式的運算》的第8小節(jié),占兩個課時,這是第一課時,它主要讓學(xué)生經(jīng)歷探索與推導(dǎo)完全平方公式的過程,培養(yǎng)學(xué)生的符號感與推理能力,讓學(xué)生進一步體會數(shù)形結(jié)合的思想在數(shù)學(xué)中的作用.

  一、學(xué)生學(xué)情分析

  學(xué)生的技能基礎(chǔ):學(xué)生通過對本章前幾節(jié)課的學(xué)習(xí),已經(jīng)學(xué)習(xí)了整式的概念、整式的加減、冪的運算、整式的乘法、平方差公式,這些基礎(chǔ)知識的學(xué)習(xí)為本節(jié)課的學(xué)習(xí)奠定了基礎(chǔ).

  學(xué)生活動經(jīng)驗基礎(chǔ):在平方差公式一節(jié)的學(xué)習(xí)中,學(xué)生已經(jīng)經(jīng)歷了探索和應(yīng)用的過程,獲得了一些數(shù)學(xué)活動的經(jīng)驗,培養(yǎng)了一定的符號感和推理能力;同時在相關(guān)知識的學(xué)習(xí)過程中,學(xué)生經(jīng)歷了很多探究學(xué)習(xí)的過程,具有了一定的獨立探究意識以及與同伴合作交流的能力.

  二、教學(xué)目標

  知識與技能:

  (1)讓學(xué)生會推導(dǎo)完全平方公式,并能進行簡單的應(yīng)用.

  (2)了解完全平方公式的幾何背景.

  數(shù)學(xué)能力:

  (1)由學(xué)生經(jīng)歷探索完全平方公式的過程,進一步發(fā)展學(xué)生的符號感與推理能力.

  (2)發(fā)展學(xué)生的數(shù)形結(jié)合的數(shù)學(xué)思想.

  情感與態(tài)度:

  將學(xué)生頭腦中的前概念暴露出來進行分析,避免形成教學(xué)上的“相異構(gòu)想”.

  三、教學(xué)重難點

  教學(xué)重點:1、完全平方公式的推導(dǎo);

  2、完全平方公式的應(yīng)用;

  教學(xué)難點:1、消除學(xué)生頭腦中的前概念,避免形成“相異構(gòu)想”;

  2、完全平方公式結(jié)構(gòu)的認知及正確應(yīng)用.

  四、教學(xué)設(shè)計分析

  本節(jié)課設(shè)計了十一個教學(xué)環(huán)節(jié):學(xué)生練習(xí)、暴露問題——驗證——推廣到一般情況,形成公式——數(shù)形結(jié)合——進一步拓廣——總結(jié)口訣——公式應(yīng)用——學(xué)生反饋——學(xué)生PK——學(xué)生反思——鞏固練習(xí).

  第一環(huán)節(jié):學(xué)生練習(xí)、暴露問題

  活動內(nèi)容:計算:(a+2)2

  設(shè)想學(xué)生的做法有以下幾種可能:

 、(a+2)2=a2+22

  ②(a+2)2=a2+2a+22

 、壅_做法;

  針對這幾種結(jié)果都將a=1代入計算,得出①②都是錯誤的,但③的做法是否一定正確呢?怎么驗證?

  活動目的:在很多學(xué)生的頭腦中,認為兩數(shù)和的完全平方與兩數(shù)的平方和等同,即:

  (a+2)2=a2+22,如果不將這種定式思維_就很難建立起一個正確的概念;這一環(huán)節(jié)的目的就是讓學(xué)生的這種錯誤或其它錯誤充分暴露出來,并讓學(xué)生充分認識到自己原有的定式思維是錯誤的,為下一步構(gòu)建新的思維模式埋下伏筆.

  第二環(huán)節(jié):驗證(a+2)2=a2–4a+22

  活動內(nèi)容:(a+2)2=(a+2)?(a+2)=a2+2a+2a+22

  活動目的:在前一環(huán)節(jié)已經(jīng)打破了學(xué)生的原有的思維定式的基礎(chǔ)上,給學(xué)生建立正確的思維方法,避免形成“相異構(gòu)想”.

  第三環(huán)節(jié):推廣到一般情況,形成公式

  活動內(nèi)容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2

  活動目的:讓學(xué)生經(jīng)歷從特殊到一般的探究過程,體驗到發(fā)現(xiàn)的快樂.

  第四環(huán)節(jié):數(shù)形結(jié)合

  活動內(nèi)容:設(shè)問:在多項式的乘法中,很多公式都都可以用幾何圖形進行解釋,那么完全平方公式怎樣用幾何圖形解釋呢?

  展示動畫,用幾何圖形詮釋完全平方公式的幾何意義.

  學(xué)生思考:還有沒有其它的方法來詮釋完全平方公式?(課后思考)

  活動目的:讓學(xué)生進一步認識到數(shù)與形都不是孤立存在的,數(shù)與形是可以有機地結(jié)合在一起,從而發(fā)展學(xué)生的數(shù)形結(jié)合的數(shù)學(xué)思想.

  第五環(huán)節(jié):進一步拓廣

  活動內(nèi)容:推導(dǎo)兩數(shù)差的完全平方公式:(a–b)2=a2–2ab+b2

  方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2=a2–2ab+b2

  方法2:(a–b)2=[a+(–b)]2=a2+2a(–b)+(–b)2=a2–2ab+b2

  活動目的:讓學(xué)生經(jīng)歷由兩數(shù)和的完全平方公式拓廣到兩數(shù)差的完全平方公式的過程,體會到符號差異帶來的結(jié)果差異,由第二種推導(dǎo)方法體會到兩數(shù)差的完全平方公式是兩數(shù)和的完全平方公式的`應(yīng)用.

  第六環(huán)節(jié):總結(jié)口訣、認識特征

  活動內(nèi)容:比較兩個公式的共同點與不同點:(a+b)2=a2+2ab+b2

  (a–b)2=a2–2ab+b2

  特征:①左邊都是一個二項式的完全平方,兩者僅有一個符號不同;右邊都是二次三項式,其中第一、三項是公式左邊二項式中每一項的平方,中間一項是左邊二項式中兩項乘積的兩倍,兩者也僅一個符號不同;

  ②公式中的a、b可以是任意一個代數(shù)式(數(shù)、字母、單項式、多項式)

  口訣:首平方,尾平方,首尾相乘的兩倍在中央.

  活動目的:認識完全平方公式的特征,總結(jié)出完全平方公式的口訣,便于學(xué)生理解與記憶,避免學(xué)生在應(yīng)用該公式中出現(xiàn)錯誤.

  第七環(huán)節(jié):公式應(yīng)用

  活動內(nèi)容:例:計算:①(2x–3)2;②(4x+)2

  解:①(2x–3)2=(2x)2–2?(2x)?3+32=4x2–12x+9

 、(4x+)2=(4x)2+2?????(4x)()+()2=16x2+2xy+

  活動目的:在前幾個環(huán)節(jié)中,學(xué)生對完全平方公式已經(jīng)有了感性認識,通過本環(huán)節(jié)的講解以及下一環(huán)節(jié)的練習(xí),使學(xué)生逐步經(jīng)歷認識——模仿——再認識.從而上升到理性認識的階段.

  第八環(huán)節(jié):隨堂練習(xí)

  活動內(nèi)容:計算:①;②;③(n+1)2–n2

  活動目的:通過學(xué)生的反饋練習(xí),使教師能全面了解學(xué)生對完全平方公式的理解是否到位,完全平方公式的應(yīng)用是否得當(dāng),以便教師能及時地進行查缺補漏.

  第九環(huán)節(jié):學(xué)生PK

  活動內(nèi)容:每個學(xué)生各出五道完全平方公式的計算題給自己的同桌解答,比一比誰的準確性率高,速度快.

  活動目的:活躍課堂氣氛,激起學(xué)生的好勝心,進一步鞏固學(xué)生對完全平方公式的理解與應(yīng)用.

  第十環(huán)節(jié):學(xué)生反思

  活動內(nèi)容:通過今天這堂課的學(xué)習(xí),你有哪些收獲?

  收獲1:認識了完全平方公式,并能簡單應(yīng)用;

  收獲2:了解了兩數(shù)和與兩數(shù)差的完全平方公式之間的差異;

  收獲3:感受到數(shù)形結(jié)合的數(shù)學(xué)思想在數(shù)學(xué)中的作用.

  活動目的:通過對一堂課的歸納與總結(jié),鞏固學(xué)生對完全平方公式的認識,體會數(shù)學(xué)思想的精妙.

  第十一環(huán)節(jié):布置作業(yè):

  課本P43習(xí)題1.13

《完全平方公式》教案6

  教學(xué)目標

  1、使學(xué)生理解完全平方公式的意義,弄清完全平方公式的`形式和特點;使學(xué)生知道把完全平方公式反過來就可以得到相應(yīng)的.因式分解。

  2、掌握運用完全平方公式分解因式的方法,能正確運用完全平方公式把多項式分解因式(直接用公式不超過兩次)

  教學(xué)方法:

  對比發(fā)現(xiàn)法課型新授課教具投影儀

  教師活動:

  學(xué)生活動

  復(fù)習(xí)鞏固:

  上節(jié)課我們學(xué)習(xí)了運用平方差公式分解因式,請同學(xué)們先閱讀課本87—88頁,看看你能有什么發(fā)現(xiàn)?

  新課講解:

  (投影)我們把形如a2+2ab+b2與a2-2ab+b2叫做完全平方式,和平方差公式一樣,我們也可以利用它把一些多項式因式分解。例如:

  a2+8a+16=a2+2×4a+42=(a+4)2

  a2-8a+16=a2-2×4a+42=(a-4)2

  (要強調(diào)注意符號)

  首先我們來試一試:(投影:牛刀小試)

  1.把下列各式分解因式:

  (1)x2+8x+16;(2)25a4+10a2+1

  (3)(m+n)2-4(m+n)+4

  (教師強調(diào)步驟的重要性,注意發(fā)現(xiàn)學(xué)生易錯點,及時糾正)

  2.把81x4-72x2y2+16y4分解因式

  (本題用了兩次乘法公式,難度稍大,教師要鼓勵學(xué)生大膽嘗試,敢于創(chuàng)新)

  將乘法公式反過來就得到多項式因式分解的公式。運用這些公式把一個多項式分解因式的方法叫做運用公式法。

  練習(xí):第88頁練一練第1、2題

《完全平方公式》教案7

  教學(xué)目標:

  1、經(jīng)歷探索完全平方公式的過程,并從完全平方公式的推導(dǎo)過程中,培養(yǎng)學(xué)生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展邏輯推理能力和有條理的表達能力。

  2、體會公式的發(fā)現(xiàn)和推導(dǎo)過程,理解公式的本質(zhì),從不同的層次上理解完全平方公式,并會運用公式進行簡單的計算。

  3、了解完全平方公式的幾何背景,培養(yǎng)學(xué)生的數(shù)形結(jié)合意識。

  4、在學(xué)習(xí)中使學(xué)生體會學(xué)習(xí)數(shù)學(xué)的樂趣,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的信心,感愛數(shù)學(xué)的內(nèi)在美。

  教學(xué)重點:

  1、弄清完全平方公式的來源及其結(jié)構(gòu)特點,用自己的語言說明公式及其特點;

  2、會用完全平方公式進行運算。

  教學(xué)難點:

  會用完全平方公式進行運算

  教學(xué)方法:

  探索討論、歸納總結(jié)。

  教學(xué)過程:

  一、回顧與思考

  活動內(nèi)容:復(fù)習(xí)已學(xué)過的平方差公式

  1、平方差公式:(a+b)(a—b)=a2—b2;

  公式的結(jié)構(gòu)特點:左邊是兩個二項式的乘積,即兩數(shù)和與這兩數(shù)差的`積。

  右邊是兩數(shù)的平方差。

  2、應(yīng)用平方差公式的注意事項:弄清在什么情況下才能使用平方差公式。

  二、情境引入

  活動內(nèi)容:提出問題:

  一塊邊長為a米的正方形實驗田,由于效益比較高,所以要擴大農(nóng)田,將其邊長增加b米,形成四塊實驗田,以種植不同的新品種(如圖)。

  用不同的形式表示實驗田的總面積,并進行比較。

  三、初識完全平方公式

  活動內(nèi)容:

  1、通過多項式的乘法法則來驗證(a+b)2=a2+2ab+b2的正確性。并利用兩數(shù)和的完全平方公式推導(dǎo)出兩數(shù)差的完全平方公式:(a—b)2=a2—2ab+b2。

  2、引導(dǎo)學(xué)生利用幾何圖形來驗證兩數(shù)差的完全平方公式。

  3、分析完全平方公式的結(jié)構(gòu)特點,并用語言來描述完全平方公式。

  結(jié)構(gòu)特點:左邊是二項式(兩數(shù)和(差))的平方;

  右邊是兩數(shù)的平方和加上(減去)這兩數(shù)乘積的兩倍。

  語言描述:兩數(shù)和(或差)的平方,等于這兩數(shù)的平方和加上(或減去)這兩數(shù)積的兩倍。

  四、再識完全平方公式

  活動內(nèi)容:例1用完全平方公式計算:

 。1)(2x?3)2(2)(4x+5y)2(3)(mn?a)2(4)(—1—2x)2(5)(—2x+1)2

  2、總結(jié)口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減。

  五、鞏固練習(xí):

  1、下列各式中哪些可以運用完全平方公式計算。

  1、6完全平方公式:

  一、學(xué)習(xí)目標

  1、會推導(dǎo)完全平方公式,并能運用公式進行簡單的計算。

  2、了解完全平方公式的幾何背景

  二、學(xué)習(xí)重點:會用完全平方公式進行運算。

  三、學(xué)習(xí)難點:理解完全平方公式的結(jié)構(gòu)特征并能靈活應(yīng)用公式進行計算。

  四、學(xué)習(xí)設(shè)計

 。ㄒ唬╊A(yù)習(xí)準備

 。1)預(yù)習(xí)書p23—26

  (2)思考:和的平方等于平方的和嗎?

  1、6《完全平方公式》習(xí)題

  1、已知實數(shù)x、y都大于2,試比較這兩個數(shù)的積與這兩個數(shù)的和的大小,并說明理由。

  2、已知(a+b)2=24,(a—b)2=20,求:

 。1)ab的值是多少?

  (2)a2+b2的值是多少?

  3、已知2(x+y)=—6,xy=1,求代數(shù)式(x+2)—(3xy—y)的值。

  《1、6完全平方公式》課時練習(xí)

  1、(5—x2)2等于;

  答案:25—10x2+x4

  解析:解答:(5—x2)2=25—10x2+x4

  分析:根據(jù)完全平方公式與冪的乘方法則可完成此題。

  2、(x—2y)2等于;

  答案:x2—8xy+4y2

  解析:解答:(x—2y)2=x2—8xy+4y2

  分析:根據(jù)完全平方公式與積的乘方法則可完成此題。

  3、(3a—4b)2等于;

  答案:9a2—24ab+16b2

  解析:解答:(3a—4b)2=9a2—24ab+16b2

  分析:根據(jù)完全平方公式可完成此題。

《完全平方公式》教案8

  教學(xué)目標:完全平方公式的推導(dǎo)及其應(yīng)用;完全平方公式的幾何解釋;視學(xué)生對算理的理解,有意識地培養(yǎng)學(xué)生的思維條理性和表達能力.

  教學(xué)重點與難點:完全平方公式的推導(dǎo)過程、結(jié)構(gòu)特點、幾何解釋,靈活應(yīng)用.

  教學(xué)過程:

  一、提出問題,學(xué)生自學(xué)

  問題:根據(jù)乘方的定義,我們知道:a2=aa,那么(a+b)2應(yīng)該寫成什么樣的形式呢?(a+b)2的運算結(jié)果有什么規(guī)律?計算下列各式,你能發(fā)現(xiàn)什么規(guī)律?

 。1)(p+1)2=(p+1)(p+1)=_______;(m+2)2=_______;

 。2)(p1)2=(p1)(p1)=_______;(m2)2=_______;

  學(xué)生討論,教師歸納,得出結(jié)果:

  (1)(p+1)2=(p+1)(p+1)=p2+2p+1

  (m+2)2=(m+2)(m+2)=m2+4m+4

  (2)(p1)2=(p1)(p1)=p22p+1

  (m2)2=(m2)(m2)=m24m+4

  分析推廣:結(jié)果中有兩個數(shù)的平方和,而2p=2p1,4m=2m2,恰好是兩個數(shù)乘積的二倍(1)(2)之間只差一個符號.

  推廣:計算(a+b)2=__________;(ab)2=__________.

  得到公式,分析公式

  結(jié)論:(a+b)2=a2+2ab+b2(ab)2=a22ab+b2

  即:兩數(shù)和(或差)的平方,等于它們的平方和,加(或減)它們的'積的2倍.

  二、幾何分析

  你能根據(jù)圖(1)和圖(2)的面積說明完全平方公式嗎?

  圖(1)大正方形的邊長為(a+b),面積就是(a+b)2,同時,大正方形可以分成圖中①②③④四個部分,它們分別的面積為a2、ab、ab、b2,因此,整個面積為a2+ab+ab+b2=a2+2ab+b2,即說明(a+b)2=a2+2ab+b2. 請點擊下載Word版完整教案:新人教版八年級數(shù)學(xué)上冊《完全平方公式》教案教案《新人教版八年級數(shù)學(xué)上冊《完全平方公式》教案》,來自網(wǎng)!

《完全平方公式》教案9

  一、教學(xué)目標

  (1)知識與技能;學(xué)生通過推導(dǎo)完全平方公式,掌握公式結(jié)構(gòu),能計算。

  (2)過程與方法目標;學(xué)生探究完全平方公式,體會數(shù)形結(jié)合。

  二、教學(xué)重點;公式結(jié)構(gòu)及運用。

  三、教學(xué)難點;公式中字母AB的含義理解與公式正確運用。

  四、教具;自制長方形、正方形卡片

  五、教學(xué)過程;

  教師活動

  學(xué)生活動

  1、1、創(chuàng)設(shè)情景,提出問題,引入課題

  (1)想一想

  一位老人很喜歡孩子,每當(dāng)孩子到他家做客時,老人都拿出糖招待他們,來了幾個孩子老人就會每個孩子幾塊糖。

  (1)第一天,a個男孩去看老人,老人共給他們幾塊糖?

  (2)第二天,個女孩子去看望老人,老人共給他們多少塊糖?

  (3)第三天,()個孩子一起去看望老人,老人共給他們多少塊糖?

  (4)第三天比前二天的孩子得到糖總數(shù)哪個多?多多少?為什么?(分組討論)

  1、1、學(xué)生四人一組討論。

  填空:

  (1)第一天給孩子塊糖。

  (2)第二天給孩子塊糖。

  (3)第三天給孩子塊糖。

  男孩子第三天多得塊糖

  女孩第三天多得塊糖。

  教師活動

  學(xué)生活動

  (2)做一做、請同學(xué)拼圖

  a

  教師巡視指導(dǎo)學(xué)生拼圖

  2、2、教師提問:

  (1)、大正方形邊長?(2)每一塊卡片的`面積是多少?(3)用不同形式表示正方形總面積,比較發(fā)現(xiàn)什么?

  3、3、想一想

  (1)(a+b)用多項式乘法法則說明

  (2)(a-b)

  4、請同學(xué)們自己敘述上面的等式

  5、說一說,ab能表示什么?

  (□+○)□+2□○+○

  6、算一算

  (1)(2X-3)(2)(4X+5Y)

  請同學(xué)們分清ab

  7、練一練

  (1)(2X-3Y)(2)(2XY-3X)

  8、試一試(a+b+c)

  作業(yè):P1351、2

  學(xué)生2人一組拼圖交流

  2、學(xué)生觀察思考

  (1)大正方形邊長?

  (2)四塊卡片的面積分別是

  (3)大正方形的總面積是多少?

  3、(1)學(xué)生運用多項式乘法法則推導(dǎo)

  (a+b)=a+2ab+b說出每一步運算理由

  (2)學(xué)生自己探究交流

  4、學(xué)生用語言敘述公式

  5、師生共同a、b對應(yīng)項教師書寫

  6、學(xué)生獨立完成練一練展示結(jié)果

  7、學(xué)生四人一組討論交流

  8、有興趣的同學(xué)可以探

《完全平方公式》教案10

  教學(xué)建議

  一、知識結(jié)構(gòu)

  二、重點、難點分析

  本節(jié)教學(xué)的重點是完全平方公式的熟記及應(yīng)用.難點是對公式特征的理解(如對公式中積的一次項系數(shù)的理解).完全平方公式是進行代數(shù)運算與變形的重要的知識基礎(chǔ),完全平方公式。

  1.兩數(shù)和(或差)的平方,等于它們的平方和,加上(或減去)它們的積的2倍.即:

  這兩個公式是根據(jù)乘方的意義與多項式的乘法法則得到的.

  這兩個公式的結(jié)構(gòu)特征是:左邊是兩個相同的二項式相乘,右邊是三項式,是左邊二中兩項的平方和,加上(這兩項相加時)或減去(這兩項相減時)這兩項乘積的2倍;公式中的字母可以表示具體的數(shù)(正數(shù)或負數(shù)),也可以表示單項式或多項式等代數(shù)式.

  2.只要符合這一公式的結(jié)構(gòu)特征,就可以運用這一公式.

  在運用公式時,有時需要進行適當(dāng)?shù)淖冃,例?可先變形為 或 或者 ,再進行計算.

  在運用公式時,防止發(fā)生 這樣錯誤.

  3.運用完全平方公式計算時,要注意:

 。1)切勿把此公式與公式 混淆,而隨意寫成 .

  (2)切勿把“乘積項” 中的2丟掉.

 。3)計算時,要先觀察題目特點是否符合公式的條件,若不符合,應(yīng)先變形為符合公式的條件的形式,再利用公式進行計算,若不能變?yōu)榉瞎綏l件的形式,則應(yīng)運用乘法法則進行計算.

  4. 與 都叫做完全平方公式.為了區(qū)別,我們把前者叫做兩數(shù)和的完全平方公式,后者叫做兩數(shù)差的完全平方公式.

  三、教法建議

  1.在公式的運用上,與平方差公式的運用一樣,應(yīng)著重讓學(xué)生掌握公式的結(jié)構(gòu)特征和字母表示數(shù)的廣泛意義,教科書把公式中的字母同具體題目中的數(shù)或式子,用“ ”連結(jié)起來,逐項比較、對照,步驟寫得完整,便于學(xué)生理解如何正確地使用完全平方公式進行計算.

  2.正確地使用公式的關(guān)鍵是確定是否符合使用公式的條件.重要的是確定兩數(shù),然后再看是否兩數(shù)的和(或差),最后按照公式寫出兩數(shù)和(或差)的平方的結(jié)果.

  3.如何使學(xué)生記牢公式呢?我們注意了以下兩點.

  (1)既講“法”,又講“理”

  在教學(xué)中要講法則、公式的應(yīng)用,也要講公式的推導(dǎo),使學(xué)生在理解公式、法則道理的基礎(chǔ)上進行記憶.我們引導(dǎo)學(xué)生借助面積圖形對完全平方公式做直觀說明,也是對說理的重視.在“明白道理”這個前提下的記憶,即使學(xué)生將來發(fā)生錯誤也易于糾正.

  (2)講聯(lián)系、講對比、講特點

  對于類似的內(nèi)容學(xué)生容易混淆,比如在本節(jié)出現(xiàn)的(a+b)2=a2+b2的錯誤,其原因是把完全平方公式和“舊”知識(ab)2=a2b2及分配律弄混,排除新舊知識間相互干擾的一種作法是向?qū)W生指明新知識的特點.所以講“理”是要講聯(lián)系、講對比、講特點.

  教學(xué)設(shè)計示例

  一、教學(xué)目標

  1.理解完全平方公式的意義,準確掌握兩個公式的結(jié)構(gòu)特征.

  2.熟練運用公式進行計算.

  3.通過推導(dǎo)公式訓(xùn)練學(xué)生發(fā)現(xiàn)問題、探索規(guī)律的能力.

  4.培養(yǎng)學(xué)生用數(shù)形結(jié)合的方法解決問題的數(shù)學(xué)思想.

  5.滲透數(shù)學(xué)公式的結(jié)構(gòu)美、和諧美.

  二、學(xué)法引導(dǎo)

  1.教學(xué)方法:嘗試指導(dǎo)法、講練結(jié)合法.

  2.學(xué)生學(xué)法:本節(jié)學(xué)習(xí)了乘法公式中的完全平方,一個是兩數(shù)和的平方,另一個是兩數(shù)差的平方,兩者僅一個“符號”不同.相乘的結(jié)果是兩數(shù)的平方和,加上(或減去)兩數(shù)的積的2倍,兩者也僅差一個“符號”不同,運用完全平方公式計算時,要注意:

  (1)切勿把此公式與公式 混淆,而隨意寫成 .

  (2)切勿把“乘積項”2ab中的2丟掉.

 。3)計算時,要先觀察題目是否符合公式的條件.若不符合,應(yīng)先變形為符合公式的條件的形式,再利用公式進行計算;若不能變?yōu)榉蠗l件的形式,則應(yīng)運用乘法法則進行計算.

  三、重點·難點及解決辦法

 。ㄒ唬┲攸c

  掌握公式的結(jié)構(gòu)特征和字母表示的廣泛含義,正確運用公式進行計算.

 。ǘ╇y點

  綜合運用平方差公式與完全平方公式進行計算.

 。ㄈ┙鉀Q辦法

  加強對公式結(jié)構(gòu)特征的深入理解,在反復(fù)練習(xí)中掌握公式的應(yīng)用.

  四、課時安排

  一課時.

  五、教具學(xué)具準備

  投影儀或電腦、自制膠片.

  六、師生互動活動設(shè)計

  1.讓學(xué)生自編幾道符合平方差公式結(jié)構(gòu)的計算題,目的是辨認題目的結(jié)構(gòu)特征.

  2.引入完全平方公式,讓學(xué)生用文字概括公式的.內(nèi)容,培養(yǎng)抽象的數(shù)字思維能力.

  3.舉例分析如何正確使用完全平方公式,師生共練完成本課時重點內(nèi)容.

  4.適時練習(xí)并總結(jié),從實踐到理論再回到實踐,以指導(dǎo)今后的解題.

  七、教學(xué)步驟

 。ㄒ唬┟鞔_目標

  本節(jié)課重點學(xué)習(xí)完全平方公式及其應(yīng)用.

  (二)整體感知

  掌握好完全平方公式的關(guān)鍵在于能正確識別符合公式特征的結(jié)構(gòu),同時還要注意公式中2ab中2的問題,在解題過程中應(yīng)多觀察、多思考、多揣摩規(guī)律.

  (三)教學(xué)過程

  1.計算導(dǎo)入;求得公式

 。1)敘述平方差公式的內(nèi)容并用字母表示;

 。2)用簡便方法計算

 、103×97

 、103 × 103

 。3)請同學(xué)們自編一個符合平方差公式結(jié)構(gòu)的計算題,并算出結(jié)果.

  學(xué)生活動:編題、解題,然后兩至三個學(xué)生說出題目和結(jié)果.

  要想用好公式,關(guān)鍵在于辨認題目的結(jié)構(gòu)特征,正確使用公式,這節(jié)課我們繼續(xù)學(xué)習(xí)“乘

  法公式”.

  引例:計算 ,

  學(xué)生活動:計算 , ,兩名學(xué)生板演,其他學(xué)生在練習(xí)本上完成,然后說出答案,得出公式.

  或合并為:

  教師引導(dǎo)學(xué)生用文字概括公式.

  方法:由學(xué)生概括,教師給予肯定、否定或更正,同時板書.

  兩數(shù)和(或差)的平方,等于它們的平方和,加上(或減去)它們的積的2倍.

  【教法說明】

 、購(fù)習(xí)平方差公式,主要是引起回憶,鞏固公式;編題在于提高興趣.

 、谟辛似椒讲罟降耐茖(dǎo)過程,學(xué)生基本建立起了一些特殊多項式乘法的認識方法,因此推導(dǎo)完全平方公式可以由計算直接得出.

  2.結(jié)合圖形,理解公式

  根據(jù)圖形完成下列問題:

  如圖:A、B兩圖均為正方形,

 。1)圖A中正方形的面積為____________,(用代數(shù)式表示)

  圖Ⅰ、Ⅱ、Ⅲ、Ⅳ的面積分別為_______________________,初中數(shù)學(xué)教案《完全平方公式》。

 。2)圖B中,正方形的面積為____________________,

 、蟮拿娣e為______________,

 、、Ⅱ、Ⅳ的面積和為____________,

  用B、Ⅰ、Ⅱ、Ⅳ的面積表示Ⅲ的面積_________________。

  分別得出結(jié)論:

  學(xué)生活動:在教師引導(dǎo)下回答問題.

  【教法說明】利用圖形講解,增強學(xué)生對公式的直觀理解,以便更好地掌握公式,同時也培養(yǎng)學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想。

  3.探索新知,講授新課

 。1)引例:計算

  教師講解:在 中,把x看成a,把2y看成b,在 中把2x看成a,把3y看成b,則 、 ,就可用完全平方公式來計算,即

  【教法說明】 引例的目的在于使學(xué)生進一步理解公式的結(jié)構(gòu),為運用公式打好基礎(chǔ).

 。2)例1 運用完全平方公式計算:

 、 ② ③

  學(xué)生活動:學(xué)生獨立在練習(xí)本上嘗試解題,3個學(xué)生板演.

  【教法說明】 讓學(xué)生先模仿公式解題,學(xué)生可能會出現(xiàn)一些問題,這也正是學(xué)生對公式理解、應(yīng)用和熟練程度上存在的需要解決的問題,反饋后要緊扣公式,重點講解,達到解決問題的目的,關(guān)于例呈中(3)的計算,可對照公式直接計算,也可變形成 ,然后再進行計算,同時也可訓(xùn)練學(xué)生靈活運用學(xué)過的知識的能力.

  4.嘗試反饋,鞏固知識

《完全平方公式》教案11

  本節(jié)課教學(xué)內(nèi)容分析

  《完全平方公式》是學(xué)生在已經(jīng)掌握單項式乘法、多項式乘法及平方差公式基礎(chǔ)上的拓展,而且公式的推導(dǎo)是初中數(shù)學(xué)中運用推理方法進行代數(shù)式恒等變形的開端,是從一般到特殊的認知規(guī)律的典型范例.通過對公式的學(xué)習(xí)來簡化某些整式的運算,為以后的因式分解、分式的化簡、二次根式中的分母有理化、解一元二次方程、函數(shù)等內(nèi)容奠定了基礎(chǔ).因此,完全平方公式在初中階段的教學(xué)中具有很重要地位。

  依據(jù)課程標準

  本節(jié)課對應(yīng)的課標要求是讓學(xué)生了解公式的幾何背景,能推導(dǎo)驗證公式的準確性,并會利用公式進行簡單計算。經(jīng)歷從“數(shù)”與“形”兩個角度解決問題的過程,體會數(shù)形結(jié)合的思想。經(jīng)歷探究解決簡單問題的過程,提高學(xué)生分析問題和解決問題的能力,發(fā)展應(yīng)用意識。

  學(xué)習(xí)者特征分析

  八年級的學(xué)生年齡基本都在十四歲左右,正處于活潑好動的青春期中期。此階段的學(xué)生,個人意識增強,渴望歸屬感和被認同。如果課堂氣氛沉悶單調(diào),他們也會較快的感到疲勞煩躁。針對學(xué)生的心智特征及本課實際,我以“引”為主,主要采用啟發(fā)引導(dǎo),合作交流的方式展開教學(xué),引導(dǎo)學(xué)生主動參與到教學(xué)過程中來建構(gòu)知識。

  教學(xué)策略闡述

  1、問題引入策略:通過提出問題,激發(fā)學(xué)生學(xué)習(xí)的興趣和求知欲,創(chuàng)設(shè)寬松活潑的課堂教學(xué)氣氛,維持學(xué)生學(xué)習(xí)的動機。

  2、自主學(xué)習(xí)策略:學(xué)生通過自己觀察、思考,促進思維的深層次加工和提高課堂參與度。

  3、引導(dǎo)探究策略:學(xué)生通過小組合作,推導(dǎo)驗證公式,充分發(fā)揮學(xué)生的主體作用。

  4、類比啟發(fā)策略:在完成教學(xué)要求的基礎(chǔ)上,通過解決與生活實際緊密聯(lián)系的問題情境,鞏固提高學(xué)生運用公式解決生活問題的能力。

  本節(jié)課教學(xué)目標

  知識和技能:

  1、經(jīng)歷探索完全平方公式的過程,進一步發(fā)展符號感和推理能力;

  2、會推導(dǎo)完全平方公式,并能運用公式進行簡單的計算;

  3、了解完全平方公式的幾何背景。

  過程和方法:

  1、在學(xué)習(xí)的過程中使學(xué)生體會數(shù)形結(jié)合的思想;

  2、經(jīng)歷公式的驗證,進一步發(fā)展符號感和推理能力,培養(yǎng)學(xué)生數(shù)學(xué)建模的思想。情感態(tài)度和價值觀:體驗數(shù)學(xué)活動充滿著探索性和創(chuàng)造性,并在數(shù)學(xué)活動中獲得成功的體驗與喜悅,樹立自信心。

  教學(xué)重點和難點

  項目內(nèi)容解決措施

  教學(xué)重點完全平方公式的結(jié)構(gòu)特點及公式的直接運用在教學(xué)中逐步設(shè)置疑問,引導(dǎo)學(xué)生動手、動腦、動口,積極參與知識全過程。由易到難安排例題、練習(xí),符合八年級學(xué)生的認知結(jié)構(gòu)特點。課堂中,對學(xué)生激勵為主,表揚為輔,樹立其學(xué)習(xí)的自信心。師生互動、講練結(jié)合,從而突出教學(xué)重點、突破教學(xué)難點.

  教學(xué)難點完全平方公式的應(yīng)用以及對公式中字母a、b的廣泛含義的理解與正確應(yīng)用

  教學(xué)過程設(shè)計教學(xué)過程設(shè)計教學(xué)過程設(shè)計教學(xué)過程設(shè)計教學(xué)內(nèi)容師生互動設(shè)計意圖

  活動一:問題感知,情景切入有一種記憶游戲,游戲規(guī)則是:每次只能翻一張底牌,記憶并找出相同內(nèi)容的底牌,連續(xù)點出相同內(nèi)容的底牌即可消失,直至底牌全部消失就算過關(guān)。下圖是每個關(guān)卡的底牌布局,觀察并回答下列問題:第a個關(guān)卡有xx張底牌;第b個關(guān)卡有xx張底牌;第(a+b)個關(guān)卡有xxxxx張底牌;第a個關(guān)卡的底牌數(shù)與第b個關(guān)卡的底牌數(shù)之和與第(a+b)個關(guān)卡的底牌數(shù)哪個多?多多少?

  師:班班通展示問題,層層設(shè)問,引導(dǎo)學(xué)生解決實際問題,并關(guān)注學(xué)生情況。

  生:在教師引導(dǎo)下思考并解決問題利用生活情景引入,消除學(xué)生的陌生感,激發(fā)學(xué)生的學(xué)習(xí)興趣,體會數(shù)學(xué)來源于生活。

  活動二:深入問題,合作探究2、計算下列各式,你能發(fā)現(xiàn)什么規(guī)律

 。1)(p+1) =(p+1)(p+1) = xxxx;

 。2)(m+2) = xxxx;

  (3)(p-1) = (p-1)(p-1)=xxx;

 。4)(m-2) = xxxxx.

  (5)(a+b) =xxxxx;(a-b) =xxxxxxx.在教師的引導(dǎo)下,學(xué)生獨立完成解題,觀察并找出式子的規(guī)律讓學(xué)生體會到完全平方公式是乘法公式的特例,因應(yīng)用廣泛,計算簡捷,故作為公式學(xué)習(xí)。

  3、猜想?你是怎樣推導(dǎo)的呢?還有其他證明方法嗎?

  生:用代數(shù)的方法驗證公式的準確性繼續(xù)讓學(xué)生體會到完全平方公式是乘法公式的特例化未學(xué)為已知,體會數(shù)學(xué)中的化歸思想。

  活動三:結(jié)構(gòu)分析,建構(gòu)新知4、完全平方公式:

  5、分析公式的結(jié)構(gòu)特征:左邊:兩數(shù)和的平方。右邊:是一個二次三項式,其中兩項為兩數(shù)的平方和;另一項是兩數(shù)積的2倍,且與左邊乘式中間的符號相同。用文字語言敘述:兩數(shù)和的`平方,等于它們的平方和加上它們積的2倍。簡記:首平方,尾平方,積的2倍中間放,積的符號看前方。幾何解釋:完全平方和公式完全平方差公式

  師:引導(dǎo)學(xué)生觀察公式的左右邊,進一步挖掘公式的結(jié)構(gòu)特征教師在學(xué)生的發(fā)言過程中進行逐步歸納。

  生:用幾何的方法驗證公式的準確性學(xué)生自主學(xué)習(xí)養(yǎng)成獨立思考、分析問題、解決問題的習(xí)慣以形助數(shù),使學(xué)生體會數(shù)學(xué)中的數(shù)學(xué)結(jié)合思想

  活動四:范例分析,深化新知例1、用完全平方公式計算下列各題,并指出誰可以看作公式中的a、b。

 。2)仔細閱讀例1,注意以下問題:

 、倜康佬☆}分別選用了哪個完全平方公式,為什么?并能指出誰可以看作公式中的

  ②解題步驟.師:例題講解分析解題思路,強調(diào)注意事項,規(guī)范解題格式生:及時小結(jié)讓學(xué)生學(xué)會優(yōu)化選擇

  活動五:嘗試練習(xí),拓展提升

  7、下面各式的計算結(jié)果是否正確?如果不正確,應(yīng)當(dāng)怎樣改正(1)(2)(3)(4)

  8、活用公式:

  9、你能用幾種方法運用完全平方公式計算(1) (2)例2、運用完全平方公式計算:(1)102(2)99師:搶答題,看誰的反應(yīng)快生:在搶答后小結(jié)套用公式的注意事項師:引導(dǎo)學(xué)生一題多解并關(guān)注學(xué)生的書寫的規(guī)范性。

  生:靈活運用公式解題及時練習(xí)鞏固應(yīng)用在例題、練習(xí)的基礎(chǔ)上變式,加深學(xué)生對所學(xué)知識的理解滲透一題多解的數(shù)學(xué)思想,發(fā)散學(xué)生數(shù)學(xué)思維。多層面多方位考察完全平方公式,加深理解。

  活動六:課堂小結(jié),歸納提高本節(jié)課你有哪些收獲完全平方公式:記憶口訣:首平方,尾平方,積的2倍中間放,積的符號看前方。注意:

  a、b可以表示數(shù),單項式或多項式。

  2、解題技巧:在解題之前應(yīng)注意觀察思考,選擇不同的方法會有不同的效果,要學(xué)會優(yōu)化選擇.

  3、數(shù)學(xué)思想:體會數(shù)學(xué)中的一題多解,數(shù)形結(jié)合思想,化歸思想,整體代入思想.教師引導(dǎo)學(xué)生總結(jié)回顧學(xué)習(xí)內(nèi)容,幫助學(xué)生學(xué)習(xí)歸納反思。并關(guān)注不同層次學(xué)生對本節(jié)知識的理解、掌握程度。學(xué)生自己總結(jié),互相補充。通過學(xué)生的自評與反思,有助于學(xué)生養(yǎng)成整理知識的習(xí)慣,有助于學(xué)生在剛剛理解了新知識的基礎(chǔ)上,及時把知識系統(tǒng)化、條理化。同時又有利于及時調(diào)整教學(xué)策略,為下節(jié)課的教學(xué)打下伏筆。

  活動七:布置作業(yè),自我評價

  1、必做題:課本第112頁

  2 、3(1)(3)2、選做題:課本第112頁

  3(2)(4)、4、7教師精選習(xí)題,布置作業(yè)學(xué)生課外獨立完成作業(yè)。課后作業(yè)是對課堂所學(xué)知識的鞏固,提高、延續(xù)和補充。

  板書設(shè)計

  §14.2.2完全平方公式公式口訣解題技巧例1.略例2.略練習(xí)、草稿

  教學(xué)預(yù)測、反思

  預(yù)測:

  (1)這節(jié)課倡導(dǎo)了以學(xué)生為主,教師為輔的思想,留足了一定的時間讓學(xué)生去發(fā)現(xiàn)探索、以及做練習(xí),學(xué)生學(xué)習(xí)效果明顯。

 。2)采用了多媒體輔助教學(xué),以較清晰的手段呈現(xiàn)了學(xué)生整個學(xué)習(xí)過程,讓課堂更加直觀明了,同時容量也增大了。

  (3)完全平方公式的直接應(yīng)用掌握還可以,公式的靈活應(yīng)用和妙用大部分學(xué)生還沒有掌握,課下加強聯(lián)系,多變幻題型,突破難關(guān)。反思:好的方面:不足方面:

《完全平方公式》教案12

  授課教師:

  授課時間:

  課型:新授

  課題:3.4探究實際問題與一元一次方程組

  教學(xué)目標基礎(chǔ)知識:掌握一元一次方程得解法,了解銷售中的數(shù)量關(guān)系。

  基本技能:能夠分析實際問題中的數(shù)量關(guān)系,找相等關(guān)系,列出一元一次方程。

  基本思想

  方法:通過將實際問題轉(zhuǎn)化成數(shù)學(xué)問題,培養(yǎng)學(xué)生的建模思想;

  基本活動經(jīng)驗體會解決實際問題的一般步驟及盈虧中的'關(guān)系

  重點探索并掌握列一元一次方程解決實際問題的方法,教學(xué)

  難點找出已知量與未知量之間的關(guān)系及相等關(guān)系。

  教具資料準備教師準備:課件

  學(xué)生準備:書、本

  教學(xué)過程自備

  補充集備

  補充

  一、創(chuàng)設(shè)情景引入新課

  觀察圖片引課(見大屏幕)

  二、探究

  探究銷售中的盈虧問題:

  1、商品原價200元,九折出售,賣價是元。

  2、商品進價是30元,售價是50元,則利潤

  是元。

  2、某商品原來每件零售價是a元,現(xiàn)在每件降價10%,降價后每件零售價是元。

  3、某種品牌的彩電降價20%以后,每臺售價為a元,則該品牌彩電每臺原價應(yīng)為元。

  4、某商品按定價的八折出售,售價是14.8元,則原定售價是。

 。▽W(xué)生總結(jié)公式)

  熟悉各個量之間的聯(lián)系有助于熟悉利潤、利潤率售價進價之間聯(lián)系

《完全平方公式》教案13

  學(xué)習(xí)目標:

  1、經(jīng)歷探索完全平方公式的過程,發(fā)展學(xué)生觀察、交流、歸納、猜測、驗證等能力。

  2、會推導(dǎo)完全平方公式,了解公式的幾何背景,會用公式計算。

  3、數(shù)形結(jié)合的數(shù)學(xué)思想和方法。

  學(xué)習(xí)重點:會推導(dǎo)完全平方公式,并能運用公式進行簡單的計算。

  學(xué)習(xí)難點:掌握完全平方公式的結(jié)構(gòu)特征,理解公式中a.b的.廣泛含義。

  學(xué)習(xí)過程:

  一、學(xué)習(xí)準備

  1、利用多項式乘以多項式計算:(a+b)2 (a-b)2

  2、這兩個特殊形式的多項式乘法結(jié)果稱為完全平方公式。

  嘗試用自己的語言敘述完全平方公式:

  3、完全平方公式的幾何意義:閱讀課本64頁,完成填空。

  4、完全平方公式的結(jié)構(gòu)特征:

  (a+b)2=a2+2ab+b2

  (a-b)2=a2-2ab+b2

  左邊是 形式,右邊有三項,其中兩項是 形式,另一項是

  注意:公式中字母的含義廣泛,可以是 ,只要題目符合公式的結(jié)構(gòu)特征,就可以運用這一公式,可用符號表示為:(□±△)=□2±2□△+△2

  5、兩個完全平方公式的轉(zhuǎn)化:

  (a-b)2= 2=( )2+2( )+( )2=

  二、合作探究

  1、利用乘法公式計算:

  (1) (3a+2b)2 (2) (-4x2-1)2

  分析:要分清題目中哪個式子相當(dāng)于公式中的a ,哪個式子相當(dāng)于公式中的b

  2、利用乘法公式計算:

  (1) 992 (2) ( )2

  分析:要利用完全平方公式,需具備完全平方公式的結(jié)構(gòu),所以992可以轉(zhuǎn)化( )2,( )2可以轉(zhuǎn)化為( )2

  3、利用完全平方公式計算:

  (1) (a+b+c)2 (2) (a-b)3

  三、學(xué)習(xí)

  對照學(xué)習(xí)目標,通過預(yù)習(xí),你覺得自己有哪些方面的收獲?又存在哪些方面的疑惑?

  四、自我測試

  1、下列計算是否正確,若不正確,請訂正;

  (1) (-1+3a)2=9a2-6a+1

  (2) (3x2- )2=9x4-

  (3) (xy+4)2=x2y2+16

  (4) (a2b-2)2=a2b2-2a2b+4

  2、利用乘法公式計算:

  (1) (3x+1)2 (2) (a-3b)2

  (3) (-2x+ )2 (4) (-3m-4n)2

  3、利用乘法公式計算:

  (1) 9992 (2) (100.5)2

  4、先化簡,再求值;

  ( m-3n)2-( m+3n)2+2,其中m=2,n=3

  五、思維拓展

  1、如果x2-kx+81是一個完全平方公式,則k的值是

  2、多項式4x2+1加上一個單項式后,使它能成為一個整式的完全平方,那么加上的單項式可以是

  3、已知(x+y)2=9, (x-y)2=5 ,求xy的值

  4、x+y=4 ,x-y=10 ,那么xy=

  5、已知x- =4,則x2+ =

《完全平方公式》教案14

  教材分析

  1本節(jié)課的主題:通過一系列的探究活動,引導(dǎo)學(xué)生從計算結(jié)果中總結(jié)出完全平方公式的兩種形式

  1、以教材作為出發(fā)點,依據(jù)《數(shù)學(xué)課程標準》,引導(dǎo)學(xué)生體會、參與科學(xué)探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關(guān)系。通過學(xué)生自主、獨立的發(fā)現(xiàn)問題,對可能的答案做出假設(shè)與猜想,并通過多次的檢驗,得出正確的結(jié)論。學(xué)生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實踐能力等方面的發(fā)展。

  2、用標準的數(shù)學(xué)語言得出結(jié)論,使學(xué)生感受科學(xué)的嚴謹,啟迪學(xué)習(xí)態(tài)度和方法。

  學(xué)情分析

  1、在學(xué)習(xí)本課之前應(yīng)具備的基本知識和技能:

 、偻愴椀亩x。

 、诤喜⑼愴椃▌t

 、鄱囗検匠艘远囗検椒▌t。

  2、學(xué)習(xí)者對即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:

  在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學(xué)生從等號的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。

  教學(xué)目標

  (一)教學(xué)目標:

  1、經(jīng)歷探索完全平方公式的過程,進一步發(fā)展符號感和推力能力。

  2、會推導(dǎo)完全平方公式,并能運用公式進行簡單的計算。

  (二)知識與技能:經(jīng)歷從具體情境中抽象出符號的過程,認識有理

  數(shù)、實數(shù)、代數(shù)式、、;掌握必要的運算,(包括估算)技能;探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,并能運用代數(shù)式、、不等式、函數(shù)等進行描述。

  (四)解決問題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問題;嘗試從不同角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的'反思,獲得解決問題的經(jīng)驗。

  (五)情感與態(tài)度:敢于面對數(shù)學(xué)活動中的困難,并有獨立克服困難和運用知識解決問題的成功體驗,有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見解;能從交流中獲益。

  教學(xué)重點和難點

  重點:能運用完全平方公式進行簡單的計算。

  難點:會推導(dǎo)完全平方公式

  教學(xué)過程

  教學(xué)過程設(shè)計如下:

  〈一〉、提出問題

  [引入]同學(xué)們,前面我們學(xué)習(xí)了多項式乘多項式法則和合并同類項法則,通過運算下列四個小題,你能總結(jié)出結(jié)果與多項式中兩個單項式的關(guān)系嗎?

  (2m+3n)2=_______________,(-2m-3n)2=______________,

  (2m-3n)2=_______________,(-2m+3n)2=_______________。

  〈二〉、分析問題

  1、[學(xué)生回答]分組交流、討論

  (2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,

  (2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。

  (1)原式的特點。

  (2)結(jié)果的項數(shù)特點。

 。3)三項系數(shù)的特點(特別是符號的特點)。

 。4)三項與原多項式中兩個單項式的關(guān)系。

  2、[學(xué)生回答]總結(jié)完全平方公式的語言描述:

  兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;

  兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。

  3、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達式:

  (a+b)2=a2+2ab+b2;

  (a-b)2=a2-2ab+b2.

  〈三〉、運用公式,解決問題

  1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)

  (m+n)2=____________, (m-n)2=_______________,

  (-m+n)2=____________, (-m-n)2=______________,

  (a+3)2=______________, (-c+5)2=______________,

  (-7-a)2=______________, (0.5-a)2=______________.

  2、判斷:

  ( )① (a-2b)2= a2-2ab+b2

  ( )② (2m+n)2= 2m2+4mn+n2

  ( )③ (-n-3m)2= n2-6mn+9m2

  ( )④ (5a+0.2b)2= 25a2+5ab+0.4b2

  ( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2

  ( )⑥ (-a-2b)2=(a+2b)2

  ( )⑦ (2a-4b)2=(4a-2b)2

  ( )⑧ (-5m+n)2=(-n+5m)2

  3、一現(xiàn)身手

 、 (x+y)2 =______________;② (-y-x)2 =_______________;

  ③ (2x+3)2 =_____________;④ (3a-2)2 =_______________;

 、 (2x+3y)2 =____________;⑥ (4x-5y)2 =______________;

 、 (0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________.

  〈四〉、[學(xué)生小結(jié)]

  你認為完全平方公式在應(yīng)用過程中,需要注意那些問題?

  (1)公式右邊共有3項。

  (2)兩個平方項符號永遠為正。

  (3)中間項的符號由等號左邊的兩項符號是否相同決定。

  (4)中間項是等號左邊兩項乘積的2倍。

  〈五〉、探險之旅

  (1)(-3a+2b)2=________________________________

 。2)(-7-2m) 2 =__________________________________

 。3)(-0.5m+2n) 2=_______________________________

 。4)(3/5a-1/2b) 2=________________________________

 。5)(mn+3) 2=__________________________________

 。6)(a2b-0.2) 2=_________________________________

 。7)(2xy2-3x2y) 2=_______________________________

  (8)(2n3-3m3) 2=________________________________

  板書設(shè)計

  完全平方公式

  兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;(a+b)2=a2+2ab+b2;

  兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。(a-b)2=a2-2ab+b2

《完全平方公式》教案15

  1.能根據(jù)多項式的乘法推導(dǎo)出完全平方公式;(重點)

  2.理解并掌握完全平方公式,并能進行計算.(重點、難點)

  一、情境導(dǎo)入

  計算:

  (1)(x+1)2; (2)(x-1)2;

  (3)(a+b)2; (4)(a-b)2.

  由上述計算,你發(fā)現(xiàn)了什么結(jié)論?

  二、合作探究

  探究點:完全平方公式

  【類型一】 直接運用完全平方公式進行計算

  利用完全平方公式計算:

  (1)(5-a)2;

  (2)(-3-4n)2;

  (3)(-3a+b)2.

  解析:直接運用完全平方公式進行計算即可.

  解:(1)(5-a)2=25-10a+a2;

  (2)(-3-4n)2=92+24n+16n2;

  (3)(-3a+b)2=9a2-6ab+b2.

  方法總結(jié):完全平方公式:(a±b)2=a2±2ab+b2.可巧記為“首平方,末平方,首末兩倍中間放”.

  變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課堂達標訓(xùn)練”第12題

  【類型二】 構(gòu)造完全平方式

  如果36x2+(+1)x+252是一個完全平方式,求的值.

  解析:先根據(jù)兩平方項確定出這兩個數(shù),再根據(jù)完全平方公式確定的值.

  解:∵36x2+(+1)x+252=(6x)2+(+1)x+(5)2,∴(+1)x=±26x5,∴+1=±60,∴=59或-61.

  方法總結(jié):兩數(shù)的平方和加上或減去它們積的2倍,就構(gòu)成了一個完全平方式.注意積的2倍的符號,避免漏解.

  變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課堂達標訓(xùn)練”第4題

  【類型三】 運用完全平方公式進行簡便計算

  利用完全平方公式計算:

  (1)992; (2)1022.

  解析:(1)把99寫成(100-1)的形式,然后利用完全平方公式展開計算.(2)可把102分成100+2,然后根據(jù)完全平方公式計算.

  解:(1)992=(100-1)2=1002-2×100+12=10000-200+1=9801;

  (2)1022=(100+2)2=1002+2×100×2+4=10404.

  方法總結(jié):利用完全平方公式計算一個數(shù)的平方時,先把這個數(shù)寫成整十或整百的.數(shù)與另一個數(shù)的和或差,然后根據(jù)完全平方公式展開計算.

  變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課堂達標訓(xùn)練”第13題

  【類型四】 靈活運用完全平方公式求代數(shù)式的值

  若(x+)2=9,且(x-)2=1.

  (1)求1x2+12的值;

  (2)求(x2+1)(2+1)的值.

  解析:(1)先去括號,再整體代入即可求出答案;(2)先變形,再整體代入,即可求出答案.

  解:(1)∵(x+)2=9,(x-)2=1,∴x2+2x+2=9,x2-2x+2=1,4x=9-1=8,∴x=2,∴1x2+12=x2+2x22=(x+)2-2xx22=9-2×222=54;

  (2)∵(x+)2=9,x=2,∴(x2+1)(2+1)=x22+2+x2+1=x22+(x+)2-2x+1=22+9-2×2+1=10.

  方法總結(jié):所求的展開式中都含有x或x+時,我們可以把它們看作一個整體代入到需要求值的代數(shù)式中,整體求解.

  變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課后鞏固提升”第9題

  【類型五】 完全平方公式的幾何背景

  我們已經(jīng)接觸了很多代數(shù)恒等式,知道可以用一些硬紙片拼成的圖形面積來解釋一些代數(shù)恒等式.例如圖甲可以用來解釋(a+b)2-(a-b)2=4ab.那么通過圖乙面積的計算,驗證了一個恒等式,此等式是( )

  A.a(chǎn)2-b2=(a+b)(a-b)

  B.(a-b)(a+2b)=a2+ab-2b2

  C.(a-b)2=a2-2ab+b2

  D.(a+b)2=a2+2ab+b2

  解析:空白部分的面積為(a-b)2,還可以表示為a2-2ab+b2,所以,此等式是(a-b)2=a2-2ab+b2.故選C.

  方法總結(jié):通過幾何圖形面積之間的數(shù)量關(guān)系對完全平方公式做出幾何解釋.

  變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課堂達標訓(xùn)練”第7題

  【類型六】 與完全平方公式有關(guān)的探究問題

  下表為楊輝三角系數(shù)表,它的作用是指導(dǎo)讀者按規(guī)律寫出形如(a+b)n(n為正整數(shù))展開式的系數(shù),請你仔細觀察下表中的規(guī)律,填出(a+b)6展開式中所缺的系數(shù).

  (a+b)1=a+b,

  (a+b)2=a2+2ab+b2,

  (a+b)3=a3+3a2b+3ab2+b3,

  則(a+b)6=a6+6a5b+15a4b2+________a3b3+15a2b4+6ab5+b6.

  解析:由(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3可得(a+b)n的各項展開式的系數(shù)除首尾兩項都是1外,其余各項系數(shù)都等于(a+b)n-1的相鄰兩個系數(shù)的和,由此可得(a+b)4的各項系數(shù)依次為1、4、6、4、1;(a+b)5的各項系數(shù)依次為1、5、10、10、5、1;因此(a+b)6的系數(shù)分別為1、6、15、20、15、6、1,故填20.

  方法總結(jié):對于規(guī)律探究題,讀懂題意并根據(jù)所給的式子尋找規(guī)律,是快速解題的關(guān)鍵.

  變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課后鞏固提升”第10題

  三、板書設(shè)計

  1.完全平方公式

  兩個數(shù)的和(或差)的平方,等于這兩個數(shù)的平方和加(或減)這兩個數(shù)乘積的2倍.

  (a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.

  2.完全平方公式的運用

  本節(jié)課通過多項式乘法推導(dǎo)出完全平方公式,讓學(xué)生自己總結(jié)出完全平方公式的特征,注意不要出現(xiàn)如下錯誤:(a+b)2=a2+b2,(a-b)2=a2-b2.為幫助學(xué)生記憶完全平方公式,可采用如下口訣:首平方,尾平方,乘積兩倍在中央.教學(xué)中,教師可通過判斷正誤等習(xí)題強化學(xué)生對完全平方公式的理解記憶。

【《完全平方公式》教案】相關(guān)文章:

《完全平方公式》教案02-15

《完全平方公式》教案07-13

數(shù)學(xué)《完全平方公式》教案11-25

數(shù)學(xué)《完全平方公式》教案[通用]12-20

【精品】《完全平方公式》教案15篇01-09

平方差公式教學(xué)反思03-23

《平方根》教案11-03

平方根教學(xué)反思06-12

《乘法公式》教學(xué)反思04-02

乘法公式教學(xué)反思04-01