- 相關(guān)推薦
分式方程教案
作為一名教師,總歸要編寫(xiě)教案,編寫(xiě)教案有利于我們科學(xué)、合理地支配課堂時(shí)間。來(lái)參考自己需要的教案吧!以下是小編為大家整理的分式方程教案,供大家參考借鑒,希望可以幫助到有需要的朋友。
分式方程教案1
教學(xué)目標(biāo):
1、本節(jié)課使學(xué)生在學(xué)完了可化為一元二次方程的分式方程的解法后,解決實(shí)際問(wèn)題應(yīng)用之一.——行程問(wèn)題,使學(xué)生正確理解行程問(wèn)題的有關(guān)概念和規(guī)律,會(huì)列分式方程解有關(guān)行程問(wèn)題的應(yīng)用題.
2、本節(jié)課通過(guò)列分式方程解有關(guān)行程問(wèn)題的應(yīng)用題,就是把實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,這就要求學(xué)生能對(duì)實(shí)際問(wèn)題分析、概括、總結(jié)、解,從而能進(jìn)一步地提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力.
教學(xué)重點(diǎn):
列分式方程解有關(guān)行程問(wèn)題.
教學(xué)難點(diǎn):
如何分析和使用復(fù)雜的數(shù)量關(guān)系,找出相等關(guān)系,對(duì)于難點(diǎn),解決的關(guān)鍵是抓住時(shí)間、路程、速度三者之間的關(guān)系,通過(guò)三者之間的關(guān)系的分析設(shè)出未知數(shù)和列出方程.
3.疑點(diǎn):對(duì)于列分式方程解應(yīng)用題,學(xué)生往往考慮到所解出的答案是否和題意相吻合,而認(rèn)為可以不需要檢驗(yàn).通過(guò)本節(jié)的學(xué)習(xí),使學(xué)生清楚地懂得列分式方程解應(yīng)用題應(yīng)首先檢驗(yàn)所求出的方程的解是否是所列分式方程的解,然后考慮所滿(mǎn)足方程的解是否與題意相吻合.
教學(xué)過(guò)程:
在上一節(jié)課,我們已經(jīng)學(xué)習(xí)了可化為一元二次方程的分式方程的解法,我們知道,我們現(xiàn)在所學(xué)習(xí)的理論是先人通過(guò)千百年的實(shí)踐總結(jié),概括出來(lái)的`,我們學(xué)習(xí)理論是為了更好地解決實(shí)踐當(dāng)中所出現(xiàn)的問(wèn)題.這一節(jié)課所學(xué)的內(nèi)容就是運(yùn)用上節(jié)課所學(xué)過(guò)的分式方程解法的知識(shí)去解決實(shí)際問(wèn)題,關(guān)于本節(jié)內(nèi)容,是學(xué)生在上節(jié)課所學(xué)過(guò)的分式方程的解法的基礎(chǔ)上而學(xué)習(xí)的,所以點(diǎn)出由實(shí)踐——理論——實(shí)踐這一觀(guān)點(diǎn),能更加激發(fā)學(xué)生的求知欲,使得學(xué)生能充分地認(rèn)識(shí)到學(xué)習(xí)理論知識(shí)和理論知識(shí)的運(yùn)用同等重要,從而抓住學(xué)生的注意力,能使得學(xué)生充分地參與到教學(xué)活動(dòng)中去.
為了使學(xué)生能充分地利用所學(xué)過(guò)的理論知識(shí)來(lái)解決實(shí)際問(wèn)題,首先應(yīng)對(duì)上一節(jié)課所學(xué)過(guò)的分式方程的解法進(jìn)行復(fù)習(xí),同時(shí)讓學(xué)生回憶行程問(wèn)題中的三個(gè)量——速度、路程、時(shí)間三者之間的關(guān)系,從而將學(xué)生的思路調(diào)動(dòng)到本節(jié)課的內(nèi)容中來(lái),這樣對(duì)于面向全體學(xué)生,大面積地提高教學(xué)質(zhì)量大有益處.
一、新課引入:
1.解分式方程的基本思路是什么?解分式方程常用的兩種方法是什么?
2.在勻速運(yùn)動(dòng)過(guò)程中,路程s、速度v、時(shí)間t三者之間的關(guān)系是什么?
3.以前所學(xué)過(guò)的列方程解應(yīng)用題的步驟有哪些?
通過(guò)對(duì)問(wèn)題1的復(fù)習(xí),使學(xué)生對(duì)前一節(jié)內(nèi)容得到鞏固,對(duì)問(wèn)題2的復(fù)習(xí)給學(xué)生設(shè)定一種懸念,以抓住學(xué)生的注意力,對(duì)問(wèn)題3的復(fù)習(xí),使學(xué)生對(duì)于問(wèn)題2的懸念有了一種初步的判斷,以便于點(diǎn)題——本節(jié)課所學(xué)的內(nèi)容.
通過(guò)對(duì)前面三個(gè)復(fù)習(xí)問(wèn)題的設(shè)計(jì),學(xué)生能充分的認(rèn)識(shí)到本節(jié)所要學(xué)習(xí)的內(nèi)容,再加上適時(shí)點(diǎn)題,完全地將學(xué)生的注意力全部地集中到教師身上,充分發(fā)揮教師的指導(dǎo)作用,并調(diào)動(dòng)起學(xué)生的積極性,發(fā)揮學(xué)生的主體作用.
二、新課講解:
例1甲、乙二人同時(shí)從張莊出發(fā),步行15千米到李莊.甲比乙每小時(shí)多走1千米,結(jié)果比乙早到半小時(shí).二人每小時(shí)各走幾千米?
分析:
。1)題目中已表明此題是行程問(wèn)題,實(shí)質(zhì)上是速度、路程、時(shí)間三者關(guān)系在題中的隱含.
(2)題目中所隱含的等量關(guān)系是:甲從張莊到李莊的時(shí)間比乙
分式方程教案2
一.教學(xué)課題:解分式方程微教案
二.教學(xué)目標(biāo):
【知識(shí)技能】:
1.理解分式方程的意義
2.了解解分式方程的基本思路和解法3.理解解分式方程時(shí),可能無(wú)解的原因,并掌握解分式方程的驗(yàn)根方法
【過(guò)程與方法】:經(jīng)歷“實(shí)際問(wèn)題——分式方程——整式方程”的過(guò)程,發(fā)展學(xué)生分析問(wèn)題,解決問(wèn)題的能力,滲透數(shù)學(xué)的轉(zhuǎn)化思想,培養(yǎng)學(xué)生的應(yīng)用意識(shí)。
【情感態(tài)度與價(jià)值觀(guān)】:培養(yǎng)學(xué)生努力尋找解決問(wèn)題的進(jìn)取心,體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值。
三.教學(xué)重難點(diǎn):
【教學(xué)重點(diǎn)】:解分式方程的基本思路和解法
【教學(xué)難點(diǎn)】:理解解分式方程時(shí)可能無(wú)解的原因四.教材內(nèi)容分析:本節(jié)課學(xué)生已掌握簡(jiǎn)單的整式方程的解法(一元一次方程及二元一次方程組),學(xué)習(xí)過(guò)分式的四則運(yùn)算。這節(jié)課是分式方程的起始課,要求能從實(shí)際的生活情境中抽象出分式方程的概念,主要研究分式方程及其解法,分式方程與整式方程在概念上是不同的,但他們?cè)诮夥ㄉ蠀s有著一定的聯(lián)系和區(qū)別,即分式方程最終要轉(zhuǎn)化為整式方程來(lái)解,但最后要驗(yàn)根這是學(xué)生最容易忘記的,所以教學(xué)中要強(qiáng)調(diào)。四.學(xué)情分析:本節(jié)課是在學(xué)生學(xué)習(xí)了分式及運(yùn)算后學(xué)習(xí)分式方程,充分體現(xiàn)了分式方程與分式的聯(lián)系及分式方程與整式方程的區(qū)別,讓學(xué)生體會(huì)分式方程也是解決實(shí)際問(wèn)題的重要手段。五、教學(xué)過(guò)程:環(huán)節(jié)一.創(chuàng)設(shè)情景,引入新課問(wèn)題:一艘輪船在靜水中的最大航速為20千米/時(shí),它沿江以最大航速順流航行100千米所用時(shí)間與以最大航速逆流航行60千米所用時(shí)間相等,江水的流速為多少?
1.這個(gè)問(wèn)題中給出了哪些信息,等量關(guān)系是什么?
2.設(shè)江水的流速為V千米/時(shí)輪船順流航行速度為XXX千米/時(shí),逆流航行速度為XXX千米/時(shí),順流航行100千米所用時(shí)間為X小時(shí),XXX逆流航行60千米所用時(shí)間為XXX小時(shí),列方程XXX
【師生行為】:教師提出問(wèn)題,學(xué)生思考回答,在活動(dòng)中教師關(guān)注:(1)學(xué)生能否將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題(2)不同層次學(xué)生對(duì)實(shí)際問(wèn)題抽象出數(shù)學(xué)模型的掌握情況。
【設(shè)計(jì)意圖】通過(guò)實(shí)際中的行程問(wèn)題,引導(dǎo)學(xué)生從分析入手,列出含未知數(shù)的式子表示有關(guān)量,并列出方程,引發(fā)學(xué)生學(xué)習(xí)興趣,提出問(wèn)題引發(fā)思考,為探索分式方程及分式方程的解法作準(zhǔn)備,自然引出學(xué)習(xí)課題。
1.問(wèn)題:
(1)方程與以前所學(xué)的整式方程有何不同?
(2)滿(mǎn)足什么特點(diǎn)的方程叫分式方程?
板書(shū):像這樣分母中含有未知數(shù)的方程,叫做分式方程。歸納:確定是不是分式方程,主要是看是否符合分式方程的概念,方程的分母中含有未知數(shù),像這樣的'方程才屬于分式方程。
2.練習(xí)
【設(shè)計(jì)意圖】:通過(guò)讓學(xué)生自己舉例及判斷哪些方程是分式方程,及時(shí)歸納總結(jié),鞏固所學(xué)知識(shí)既然我們已經(jīng)清楚了什么樣的方程是分式方程,那么分式方程你會(huì)解嗎?讓我們來(lái)看這樣一題:如何解分式方程呢?
【教師提出問(wèn)題】:
1.這樣的方程你以前解過(guò)嗎?
2.你以前解過(guò)什么方程?
3.那你能不能把這個(gè)方程轉(zhuǎn)化為你會(huì)解的方程即整式方程呢?
4.怎么轉(zhuǎn)化呢?
【師生行為】:教師提出問(wèn)題,學(xué)生思考,討論后在全班交流探究結(jié)果。教師在活動(dòng)中關(guān)注:學(xué)生能否觀(guān)察出分式方程與整式方程的區(qū)別學(xué)生是否有利用“轉(zhuǎn)化思想”解決問(wèn)題的意識(shí)學(xué)生是否在參與合作交流的活動(dòng)中獲取知識(shí),學(xué)生是否從多角度來(lái)研究分式方程的解法。
【設(shè)計(jì)意圖】:主要讓學(xué)生運(yùn)用“轉(zhuǎn)化思想”探討解分式方程的方法,鼓勵(lì)學(xué)生從多角度思考問(wèn)題,解釋所獲得結(jié)果的合理性,培養(yǎng)學(xué)生的發(fā)散思維。
環(huán)節(jié)三.應(yīng)用遷移,鞏固提高問(wèn)題:(1)解分式方程:上面兩個(gè)方程中,為什么去分母后所得整式方程的解是它的解,而去分母所得整式方程的解卻不是它的解呢?(3)探究:分式方程無(wú)解的原因是什么?(分式方程去分母后的整式方程的解代入原分式方程分母中,分母為0無(wú)意義,所以分式方程無(wú)解)(4)探究:如何檢驗(yàn)分式方程的解?1.直接代入原方程(計(jì)算量大,很少用)2.間接代入最簡(jiǎn)公分母(常用檢驗(yàn)方法)
【設(shè)計(jì)意圖】:主要讓學(xué)生通過(guò)自己探索實(shí)踐,找出分式方程無(wú)解的原因及驗(yàn)根的必要性.學(xué)生在教學(xué)活動(dòng)中通過(guò)積極參與和有效參與,來(lái)達(dá)到知識(shí)與能力、過(guò)程和方法、情感態(tài)度與價(jià)值觀(guān)的全面落實(shí)。
環(huán)節(jié)四. 總結(jié)反思,拓展升華探究:解分式方程基本思路是什么?有哪些步驟?每一步的目的是什么?解分式方程的基本思路是:分式方程通過(guò)去分母轉(zhuǎn)化成整式方程。步驟:
步驟目的1.去分母(關(guān)鍵找最簡(jiǎn)公分母)將分式方程轉(zhuǎn)化為整式方程2.解這個(gè)整式方程得到整式方程的解3.檢驗(yàn)(代入最簡(jiǎn)公分母看是否為0,為0增根)舍去增根4.寫(xiě)出最終結(jié)果得到原方程的解
口訣:一化二解三檢驗(yàn)四作答
【設(shè)計(jì)意圖】:通過(guò)探究,引發(fā)學(xué)生的思考,讓學(xué)生在自主探究合作交流中歸納總結(jié)解分式方程的基本思路和步驟,在合作交流中獲得成功的快樂(lè)。
分式方程教案3
教學(xué)目標(biāo)
1。知識(shí)與技能
能應(yīng)用所學(xué)的函數(shù)知識(shí)解決現(xiàn)實(shí)生活中的問(wèn)題,會(huì)建構(gòu)函數(shù)“模型”。
2。過(guò)程與方法
經(jīng)歷探索一次函數(shù)的應(yīng)用問(wèn)題,發(fā)展抽象思維。
3。情感、態(tài)度與價(jià)值觀(guān)
培養(yǎng)變量與對(duì)應(yīng)的思想,形成良好的函數(shù)觀(guān)點(diǎn),體會(huì)一次函數(shù)的應(yīng)用價(jià)值。
重、難點(diǎn)與關(guān)鍵
1。重點(diǎn):一次函數(shù)的應(yīng)用。
2。難點(diǎn):一次函數(shù)的應(yīng)用。
3。關(guān)鍵:從數(shù)形結(jié)合分析思路入手,提升應(yīng)用思維。
教學(xué)方法
采用“講練結(jié)合”的教學(xué)方法,讓學(xué)生逐步地熟悉一次函數(shù)的應(yīng)用。
教學(xué)過(guò)程
一、范例點(diǎn)擊,應(yīng)用所學(xué)
例5、小芳以200米/分的'速度起跑后,先勻加速跑5分,每分提高速度20米/分,又勻速跑10分,試寫(xiě)出這段時(shí)間里她的跑步速度y(單位:米/分)隨跑步時(shí)間x(單位:分)變化的函數(shù)關(guān)系式,并畫(huà)出函數(shù)圖象。
y=
例6、A城有肥料200噸,B城有肥料300噸,現(xiàn)要把這些肥料全部運(yùn)往C、D兩鄉(xiāng)。從A城往C、D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為每噸20元和25元;從B城往C、D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為每噸15元和24元,現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸,怎樣調(diào)運(yùn)總運(yùn)費(fèi)最少?
解:設(shè)總運(yùn)費(fèi)為y元,A城往運(yùn)C鄉(xiāng)的肥料量為x噸,則運(yùn)往D鄉(xiāng)的肥料量為(200—x)噸。B城運(yùn)往C、D鄉(xiāng)的肥料量分別為(240—x)噸與(60+x)噸。y與x的關(guān)系式為:y=20x+25(200—x)+15(240—x)+24(60+x),即y=4x+10040(0≤x≤200)。
由圖象可看出:當(dāng)x=0時(shí),y有最小值10040,因此,從A城運(yùn)往C鄉(xiāng)0噸,運(yùn)往D鄉(xiāng)200噸;從B城運(yùn)往C鄉(xiāng)240噸,運(yùn)往D鄉(xiāng)60噸,此時(shí)總運(yùn)費(fèi)最少,總運(yùn)費(fèi)最小值為10040元。
拓展:若A城有肥料300噸,B城有肥料200噸,其他條件不變,又應(yīng)怎樣調(diào)運(yùn)?
二、隨堂練習(xí),鞏固深化
課本P119練習(xí)。
三、課堂總結(jié),發(fā)展?jié)撃?/p>
由學(xué)生自我評(píng)價(jià)本節(jié)課的表現(xiàn)。
四、布置作業(yè),專(zhuān)題突破
課本P120習(xí)題14。2第9,10,11題。
分式方程教案4
教學(xué)設(shè)計(jì)思路
經(jīng)歷從實(shí)際問(wèn)題中建立分式方程模型的過(guò)程,從分析分式方程的特點(diǎn)入手,引出解分式方程的根本思路。通過(guò)解分式方程討論得出分式方程驗(yàn)根的必要性。通過(guò)例題穩(wěn)固分式方程的解法,總結(jié)出解分式方程的步驟。
教學(xué)目標(biāo)
知識(shí)與技能
1.通過(guò)對(duì)實(shí)際問(wèn)題的分析,感受分式方程刻畫(huà)現(xiàn)實(shí)世界的有效模型的意義。
2.通過(guò)觀(guān)察、思考,歸納分式方程的概念。
3.解分式方程的一般步驟。
4.說(shuō)出解分式方程驗(yàn)根的必要性。
過(guò)程與方法
1.通過(guò)具體例子,獨(dú)立探索方程的解法,經(jīng)歷和體會(huì)解分式方程的必要步驟。
2.進(jìn)一步體會(huì)數(shù)學(xué)思想中的“轉(zhuǎn)化“思想,認(rèn)識(shí)到能將分式方程轉(zhuǎn)化為整式方程,從而找到解分式方程的途徑。
情感態(tài)度與價(jià)值觀(guān)
1.養(yǎng)成自覺(jué)反思求解過(guò)程和自覺(jué)檢驗(yàn)的良好習(xí)慣,培養(yǎng)嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度。
2.運(yùn)用“轉(zhuǎn)化〞的思想,將分式方程轉(zhuǎn)化為整式方程,從而獲得一種成就感和學(xué)習(xí)數(shù)學(xué)的自信心。
教學(xué)重點(diǎn)和難點(diǎn)
教學(xué)重點(diǎn)
1.解分式方程的一般步驟,熟練掌握分式方程的解法。
2.明確解分式方程驗(yàn)根的必要性。
教學(xué)難點(diǎn)
明確解分式方程驗(yàn)根的必要性。
教學(xué)方法
啟發(fā)引導(dǎo)、小組討論、合作探究
教學(xué)媒體
課件
教學(xué)過(guò)程設(shè)計(jì)
〔一〕復(fù)習(xí)及引入新課
1.什么叫方程?什么叫方程的解?
答:含有未知數(shù)的等式叫做方程。
使方程兩邊相等的未知數(shù)的值,叫做方程的解。
2.在x=0,x=1,x=-1中,哪個(gè)是方程的解,為什么?
解:〔1〕當(dāng)x=0時(shí),左邊=,右邊=0,∴左邊=右邊,∴x=0是方程的解。
〔2〕當(dāng)x=1時(shí),左式無(wú)意義,所以x=1不是方程的解。
〔3〕當(dāng)x=-1時(shí),左式≠右邊,所以x=-1不是方程的解。
3.回到本章引言中的問(wèn)題:
一艘輪船在靜水中的最大航速為20千米/時(shí),它沿江以最大航速順流航行100千米所用時(shí)間,與以最大航速逆流航行60千米所用時(shí)間相等。江水的流速為多少?
設(shè):江水的流速為千米/時(shí),則:輪船順流航行速度為千米/時(shí),逆流航行速度為千米/時(shí),順流航行100千米所用的時(shí)間為小時(shí),逆流航行60千米所用的時(shí)間為小時(shí)。
經(jīng)過(guò)分析得到問(wèn)題的量為兩個(gè)分式:、,根據(jù)量間的關(guān)系列出方程:
思考
這個(gè)方程和我們以前所見(jiàn)過(guò)的方程有什么不同?
引出分式方程的概念。
〔二〕講授新課,探索分式方程的解法
活動(dòng)1
思考
1.分式方程的主要特點(diǎn)是什么?
2.通過(guò)分析分式方程的特點(diǎn),找出與其他方程不同之處。
3.結(jié)合方程的特點(diǎn),探索如何解分式方程?
教師提出問(wèn)題,學(xué)生思考、討論;師生共同得出結(jié)論:
分式方程的特征:分母中含有未知數(shù)。
這是與前面我們學(xué)習(xí)的整式方程的.最大區(qū)別點(diǎn)。〔整式方程的未知數(shù)不在分母中!
在探討分式方程的解法時(shí),可聯(lián)系一元一次方程的解法。
如:解方程
解:去分母,方程兩邊同乘以分母的最小公倍數(shù)6,得:
去括號(hào),得:
移項(xiàng),得:
合并同類(lèi)項(xiàng),得:
系數(shù)化為1,得:
由上述解法,我們自然會(huì)想到通過(guò)“去分母〞實(shí)現(xiàn)把分式方程轉(zhuǎn)化為整式方程。
“去分母〞是將分式方程轉(zhuǎn)化成整式方程的關(guān)鍵步驟。
解方程:
去分母,方程兩邊同時(shí)乘以各分母的最簡(jiǎn)公分母得
解得:
檢驗(yàn):將代入原方程中,左邊右邊,因此是分式方程的解。
由此可知:江水的流速為5千米/時(shí)。
歸納:
解分式方程的根本思路是將分式方程化為整式方程,具體做法是“去分母〞,即方程兩邊同乘最簡(jiǎn)公分母,這也是解分式方程的一般思路和做法。
活動(dòng)解方程:
教師出例如題,學(xué)生動(dòng)手操作,思考,然后分組交流。
教師進(jìn)行評(píng)價(jià),提出質(zhì)疑,然后進(jìn)行說(shuō)明強(qiáng)調(diào)。
解:
去分母,在方程兩邊同時(shí)乘以最簡(jiǎn)公分母,得整式方程
解得:。
師
是原方程的解嗎?
生將代入原分式方程檢驗(yàn),發(fā)現(xiàn)這時(shí)分母和的值都為0,相應(yīng)的
分式無(wú)意義,所以……。
師對(duì),因此雖是整式方程的解,但不是原方程的
解,實(shí)際上,這個(gè)分式方程無(wú)解。
活動(dòng)3
思考:
在上面兩個(gè)分式方程中,為什么①去分母后所得整式方程的解就是①的解,而②去分母后所得整式方程的解卻不是②的解呢?
學(xué)生思考,分母討論,發(fā)表自己的見(jiàn)解。
通過(guò)討論總結(jié)出問(wèn)題的答案。
活動(dòng)4
問(wèn)題1:在把分式方程轉(zhuǎn)化為整式方程的過(guò)程中會(huì)產(chǎn)生增根:那么是不是就不要這樣的
解呢?采用什么樣的方法補(bǔ)救?
問(wèn)題2:怎么檢驗(yàn)較簡(jiǎn)單呢?還需要將整式方程的解分別代入原方程的左、右兩邊嗎?
教師提出問(wèn)題,學(xué)生討論、答復(fù)。
問(wèn)題1的解答:
還是要把分式方程轉(zhuǎn)化為整式方程來(lái)解,解出整式方程的解后可用檢驗(yàn)的方法看是不是原方程的解。
問(wèn)題2的解答。
不用,產(chǎn)生增根的原因是這個(gè)根使去分母時(shí)的最簡(jiǎn)公分母為零造成的。因此最簡(jiǎn)單的檢驗(yàn)方法是:把整式方程的解代入最簡(jiǎn)公分母。假設(shè)使最簡(jiǎn)公分母為零,則是原方程的增根,假設(shè)使最簡(jiǎn)公分母不為零,則是原方程的解。是增根,必舍去。一般地,說(shuō)明原方程無(wú)解。
歸納:
一般地,解分式方程時(shí),去分母后所得整式方程的解有可能使原方程中分母為0。因此應(yīng)如下檢驗(yàn):
將整式方程的解代入最簡(jiǎn)公分母,如果最簡(jiǎn)公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個(gè)解不是原分式方程的解,是增根,舍去。
活動(dòng)5
例1解方程:
例2解方程:
教師出例如題,學(xué)生動(dòng)手操作
教師強(qiáng)調(diào):去分母時(shí),方程兩邊的每一項(xiàng)都要乘同一整式,不要漏乘某項(xiàng)。
歸納:
解分式方程的一般步驟如下:
〔三〕練習(xí)
練習(xí):教科書(shū)第35頁(yè)練習(xí)
〔四〕小結(jié)
學(xué)習(xí)了哪些知識(shí)?解分式方程的一般步驟是什么?
強(qiáng)調(diào)解分式方程的三個(gè)步驟:〔一去分母;二解整式方程;三檢驗(yàn)〕缺一不可。
其次使學(xué)生明白、體驗(yàn)“轉(zhuǎn)化〞思想
分式方程教案5
學(xué)習(xí)目標(biāo):
(一)學(xué)習(xí)知識(shí)點(diǎn)
1、用分式方程的數(shù)學(xué)模型反映現(xiàn)實(shí)情境中的實(shí)際問(wèn)題.
2、用分式方程來(lái)解決現(xiàn)實(shí)情境中的問(wèn)題.
3、經(jīng)歷建立分式方程模型解決實(shí)際問(wèn)題的過(guò)程,體會(huì)數(shù)學(xué)模型的應(yīng)用價(jià)值,從而提高學(xué)習(xí)數(shù)學(xué)的興趣.
學(xué)習(xí)重點(diǎn):
1.審明題意,尋找等量關(guān)系,將實(shí)際問(wèn)題轉(zhuǎn)化成分式方程的數(shù)學(xué)模型.
2.根據(jù)實(shí)際意義檢驗(yàn)解的合理性.
學(xué)習(xí)難點(diǎn):
尋求實(shí)際問(wèn)題中的等量關(guān)系,尋求不同的解決問(wèn)題的方法.
學(xué)習(xí)過(guò)程:
Ⅰ.提出問(wèn)題,引入新課
前兩節(jié)課,我們認(rèn)識(shí)了分式方程這樣的數(shù)學(xué)模型,并且學(xué)會(huì)了解分式方程.
接下來(lái),我們就用分式方程解決生活中實(shí)際問(wèn)題.
例1:某單位將沿街的一部分房屋出租.每間房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年為9.6萬(wàn)元,第二年為10.2萬(wàn)元.
(1)你能找出這一情境的等量關(guān)系嗎?
(2)根據(jù)這一情境,你能提出哪些問(wèn)題?
(3)這兩年每間房屋的租金各是多少?
解法一:設(shè)每年各有x間房屋出租,那么第一年每間房屋的租金為_(kāi)_____元,第二年每間房屋的租金為_(kāi)_________元,根據(jù)題意得方程,
解法二:設(shè)第一年每間房屋的'租金為x元,第二年每間房屋的租金為_(kāi)______元.第一年租出的房間為_(kāi)_________間,第二年租出的房間為_(kāi)_________間,根據(jù)題意得方程,
例2:小芳帶了15元錢(qián)去商店買(mǎi)筆記本.如果買(mǎi)一種軟皮本,正好需付15元錢(qián).但售貨員建議她買(mǎi)一種質(zhì)量好的硬皮本,這種本子的價(jià)格比軟皮本高出一半,因此她只能少買(mǎi)一本筆記本.這種軟皮本和硬皮本的價(jià)格各是多少?
解:設(shè)軟皮本的價(jià)格為x元,則硬皮本的價(jià)格為_(kāi)_______元,那么15元錢(qián)可買(mǎi)軟皮本_________本,硬皮本___________本.根據(jù)題意得方程,
圖3-4
活動(dòng)與探究:
1、如圖,小明家、王老師家、學(xué)校在同一條路上.小明家到王老師家路程為3km,王老師家到學(xué)校的路程為0.5km,由于小明父母戰(zhàn)斗在抗“非典”第一線(xiàn),為了使他能按時(shí)到校,王老師每天騎自行車(chē)接小明上學(xué).已知王老師騎自行車(chē)的速度是步行速度的3倍,每天比平時(shí)步行上班多用了20分鐘,問(wèn)王老師的步行速度及騎自行車(chē)的速度各是多少?(2003年吉林省中考題)
2、從甲地到乙地有兩條公路:一條全長(zhǎng)600千米的普通公路,另一條是全長(zhǎng)480千米的高速公路。某客車(chē)在高速公路上行駛的速度比在普通公路上快45千米/時(shí),由高速公路從甲地到乙地所需時(shí)間是由普通公路從甲地到乙地所需時(shí)間的一半。求客車(chē)在高速公路上行駛的速度。
3、輪船順?biāo)叫?0千米所用的時(shí)間與逆水航行30千米所用的時(shí)間相同,若水流的速度為3千米/時(shí)求輪船在靜水中的速度?
積累與總結(jié):
1、列方程解決實(shí)際情境中的具體問(wèn)題,是數(shù)學(xué)實(shí)用性最直接的體現(xiàn),而解決這一問(wèn)題是如何將實(shí)際問(wèn)題建立方程這樣的數(shù)學(xué)模型,關(guān)鍵則在于審清題意,找出題中的等量關(guān)系,找到它就為列方程指明了方向.
2、列分式方程解應(yīng)用題的一般步驟:(1)審清題意,找出等量關(guān)系;(2)設(shè)出__________;(3)列出_________;(4)解分式方程;(5)檢驗(yàn),既要驗(yàn)證是否是原方程的的根,又要驗(yàn)證是否符合題意;(6)寫(xiě)出答案。
分式方程教案6
【知識(shí)拓展】
分 母里含有未知數(shù)的方程叫做分式方程.解分式方程組的基本思想是:化為整式方程.通常有兩種做法:一是去分母;二是換元.
解分式方程一定要驗(yàn)根.
解分式方程組時(shí)整體代換的思想體現(xiàn)得很充分.常見(jiàn)的思路有:取倒數(shù)法方程迭加法,換元法等.
列分式方程解應(yīng)用題,關(guān)鍵是找到相等關(guān)系列出方程.如果方程中含有字母表示的已知數(shù),需根據(jù)題競(jìng)變換條件,實(shí)現(xiàn)轉(zhuǎn)化.設(shè)未知數(shù)而不求解是常見(jiàn)的技巧之一.
例題求解
一、分式方程(組)的解法舉例
1.拆項(xiàng)重組解分式方程
【例1】解方程 .
解析 直接去分母太繁瑣,左右兩邊分別通分仍有很復(fù)雜的分子.考慮將每一項(xiàng)分拆:如 ,這樣可降低計(jì)算難度.經(jīng)檢驗(yàn) 為原方程的解.
注 本題中用到兩個(gè)技巧:一是將分式拆成整式加另一個(gè)分式;二是交換了項(xiàng),避免通分后分子出現(xiàn)x.這樣大大降低了運(yùn)算量.本講趣題引路中的問(wèn)題也屬于這種思路.
2.用換元法解分式方程
【例2】解方程 .
解析 若考慮去分母,運(yùn)算量過(guò)大;分拆也不行,但各分母都是二次三項(xiàng)式,試一試換元法.
解 令x2+ 2x―8=y,原方程可化為
解這個(gè)關(guān)于y的分式方程得y=9x或y=-5x.
故當(dāng)y=9x時(shí),x2+2x―8=9x,解得x1=8,x2=―1.
當(dāng)y=-5x時(shí),x2+2x―8=-5x,解得x3=―8,x4=1.
經(jīng)檢驗(yàn),上述四解均為原方程的解.
注 當(dāng)分式方程的結(jié)構(gòu)較復(fù)雜且有相同或相近部分時(shí),可通過(guò)換元將之簡(jiǎn)化.
3.形如 結(jié)構(gòu)的分式方程的解法
形如 的分式方程的解是: , .
【例3】解方程 .
解析 方程左邊兩項(xiàng)的乘積為1,可考慮化為上述類(lèi)型的問(wèn)題求解.
, 均為原方程的解.
4.運(yùn)用整體代換解分式方程組
【例4】解方程組 .
解析 若用常規(guī)思路設(shè)法消元,難度極大.注意到每一方程左邊分子均為單項(xiàng)式,為什么不試一試倒過(guò)來(lái)考慮呢?
解 顯然x=y=z=0是該方程組的一組解.
若x、y、z均不為0,取倒數(shù)相加得x=y=z=
故原方程組的解為x=y=z=0和x=y=z= .
二、含字母系數(shù)分式方程根的討論
【例5】解關(guān)于x的方程 .
解析 去分母化簡(jiǎn) 為含字母系數(shù)的一次方程,須分類(lèi)討論.
討論:(1)當(dāng)a2-1≠0時(shí)
、佼(dāng)a≠0時(shí),原方程解為x= ;
、诋(dāng)a=0時(shí),此時(shí) 是增根.
(2) 當(dāng)a2-1=0時(shí)即a= ,此時(shí)方程的解為x≠ 的任意數(shù);
綜上,當(dāng)a≠±1且a≠0時(shí),原方程解為x= ;當(dāng)a=0時(shí),原方程無(wú)解,;當(dāng)a= 時(shí),原方程的解為x≠ 的任意數(shù).
三、列分式方程解應(yīng)用題
【例6】 某商場(chǎng)在一樓和二樓之間安裝了一自動(dòng)扶梯,以均勻的速度向上行駛,一男孩和一女孩同時(shí)從自動(dòng)扶梯上走到二樓(扶梯行駛,兩人也走梯).如果兩人上梯的速度都是勻速的,每次只跨1級(jí),且男孩每分鐘走動(dòng)的級(jí)數(shù)是女孩的'2倍.已知男孩走了27級(jí)到達(dá)扶梯頂部,而女孩走了18級(jí)到達(dá)頂部.
。1)扶梯露在外面的部分有多少級(jí)?
(2)現(xiàn)扶梯近旁有一從二樓下到一樓的樓梯道,臺(tái)階的級(jí)數(shù)與 自動(dòng)扶梯的級(jí)數(shù)相等,兩個(gè)孩子各自到扶梯頂部后按原 速度再下樓梯 ,到樓梯底部再乘自動(dòng)扶梯上樓(不考慮扶梯與樓梯間的距離).求男孩第一次迫上女孩時(shí)走了多少級(jí)臺(tái)階?
解析 題中有兩個(gè)等量關(guān)系,男孩走27級(jí)的時(shí)間等于扶梯走了S-27級(jí)的時(shí)間;女孩走18級(jí)的時(shí)間等于扶梯走S―18級(jí)的時(shí)間.
解 (1)設(shè)女孩上梯速度為x級(jí)/分,自動(dòng)扶梯的速度為y級(jí)/分,扶梯露在外面的部分有S級(jí),則男孩上梯的速度為2x級(jí)/分,且有
解得 S=54.
所以扶梯露在外面的部分有54級(jí).
(2)設(shè)男孩第一次追上女孩時(shí)走過(guò)自動(dòng)扶梯rn遍,走過(guò)樓梯n遍,則女孩走過(guò)自動(dòng)扶梯(m―1)遍、走過(guò)樓梯(n―1)遍.
由于兩人所走的時(shí)間相等,所以有 .
由(1)中可求得y=2x,代人上面方程 化簡(jiǎn)得6n+m=16.
無(wú)論男孩第一次追上女孩是在自動(dòng)扶梯還是在下樓時(shí),m、n中都一定有一個(gè)是正整數(shù),且0≤m―n≤1.
試驗(yàn)知只有 m=3,n= 符合要求.
所以男孩第一次追上女孩時(shí)走的級(jí)數(shù)為3×27+ ×54=198(級(jí)).
注 本題求解時(shí)設(shè)的未知數(shù)x、y,只設(shè)不求,這種方法在解復(fù)雜的應(yīng)用題時(shí)常用來(lái)幫助分析數(shù)量關(guān)系,便于解題.
【例7】 (江蘇省初中數(shù)學(xué)競(jìng)賽C卷)編號(hào)為1到25的25個(gè)彈珠被分放在兩個(gè)籃子A和B中.15號(hào)彈珠在籃子A中,把這個(gè)彈珠從籃子A移至籃子B中,這時(shí)籃子A中的彈珠號(hào)碼數(shù)的平均數(shù)等于原平均數(shù)加 ,籃子B中彈珠號(hào)碼數(shù)的平均數(shù)也等于原平均數(shù)加 .問(wèn)原來(lái)在籃子A中有多少個(gè)彈珠?
解析 本題涉及A中原有彈珠,A、B中號(hào)碼數(shù)的平均數(shù),故引入三個(gè)未知數(shù).
解 設(shè)原來(lái)籃子A中有彈珠x個(gè),則籃子B中有彈珠(25-x)個(gè).又記原來(lái)A中彈珠號(hào)碼數(shù)的平均數(shù)為a,B中彈珠號(hào)碼數(shù)的平均數(shù)為b.則由題意得
解得x=9,即原來(lái)籃子A中有9個(gè)彈珠.
學(xué)力訓(xùn)練
。ˋ級(jí))
1.解分式方程 .
2.若關(guān)于x的方程 有增根x=1,求k的值.
3.解分式方程 .
4.解方程組 .
5.丙、丁三管齊開(kāi),15分鐘可注滿(mǎn)全池;甲、丁兩管齊開(kāi),20分鐘注滿(mǎn)全池.如果四管齊開(kāi),需要多少時(shí)間可以注滿(mǎn)全池?
。˙級(jí))
1.關(guān)于x的方程 有唯一的解,字母已知數(shù)應(yīng)具備的條件是( )
A. a≠b B.c≠d C.c+d≠0 D.bc+ad≠0
2.某隊(duì)伍長(zhǎng)6km,以每小時(shí)5 km的速度行進(jìn),通信員騎馬從隊(duì)頭到隊(duì)尾送信,到 隊(duì)尾后退返回隊(duì)頭,共用了0.5 h,則通信員騎馬的速度為每小時(shí) km.
3.某項(xiàng)工作,甲單獨(dú)作完成的天數(shù)為乙、丙合作完成天數(shù)的m倍,乙單獨(dú)作完成的天數(shù)為甲、丙合作完成天數(shù)的n倍,丙單獨(dú)作完成的天數(shù)為甲、乙合作完成天數(shù)的k倍,則 = .
4.m為何值時(shí),關(guān)于x、y的方程組: 的解,滿(mǎn)足 , ?
5.(天津市中考題)某工程由甲、乙兩隊(duì)合做6天完成,廠(chǎng) 家需付甲、乙兩隊(duì)共8700元;乙、丙兩隊(duì)合做10天完成,廠(chǎng)家需付乙、丙兩隊(duì)共9500元;甲、丙兩隊(duì)合做5天完成全部工程的 ,廠(chǎng)家需付甲、丙兩隊(duì)共5500元.
(1)求甲、乙、丙各隊(duì)單獨(dú)完成全部工程各需多少天?
(2)若工期要求不超過(guò)15天完成全部工程,問(wèn):由哪隊(duì)單獨(dú)完成此項(xiàng) 工程花錢(qián)最少?請(qǐng)說(shuō)明理由.
6.甲、乙二人兩次同時(shí)在同一糧店購(gòu)買(mǎi)糧食(假設(shè)兩次購(gòu)買(mǎi)的單價(jià)不同),甲每次購(gòu)買(mǎi)糧食100kg,乙每次購(gòu)買(mǎi)糧食用去100元.設(shè)甲、乙兩人第一次購(gòu)買(mǎi)糧食的單價(jià)為x元/kg,第二次單價(jià)為y元/kg.
(1)用含x、y的代數(shù)式表示甲兩次購(gòu)買(mǎi)糧食共需付款 元,乙兩次共購(gòu)買(mǎi) kg糧食.若甲兩次購(gòu)買(mǎi)糧食的平均單價(jià)為每千克Ql元,乙兩次購(gòu)糧的平均單價(jià)為每千克Q2元?jiǎng)tQ1= ;Q2= .
分式方程教案7
一,內(nèi)容綜述:
1、解分式方程的基本思想
在學(xué)習(xí)簡(jiǎn)單的分式方程的解法時(shí),是將分式方程化為一元一次方程,復(fù)雜的(可化為一元二次方程)分式方程的基本思想也一樣,就是設(shè)法將分式方程"轉(zhuǎn)化"為整式方程。即
分式方程整式方程
2、解分式方程的基本方法
(1)去分母法
去分母法是解分式方程的一般方法,在方程兩邊同時(shí)乘以各分式的最簡(jiǎn)公分母,使分式方程轉(zhuǎn)化為整式方程。但要注意,可能會(huì)產(chǎn)生增根。所以,必須驗(yàn)根。
產(chǎn)生增根的原因:
當(dāng)最簡(jiǎn)公分母等于0時(shí),這種變形不符合方程的同解原理(方程的兩邊都乘以或除以同一個(gè)不等于零的數(shù),所得方程與原方程同解),這時(shí)得到的.整式方程的解不一定是原方程的解。
檢驗(yàn)根的方法:
將整式方程得到的解代入原方程進(jìn)行檢驗(yàn),看方程左右兩邊是否相等。
為了簡(jiǎn)便,可把解得的根直接代入最簡(jiǎn)公分母中,如果不使公分母等于0,就是原方程的根;如果使公分母等于0,就是原方程的增根。必須舍去。
注意:增根是所得整式方程的根,但不是原方程的根,增根使原方程的公
分母為0。
用去分母法解分式方程的一般步驟:
(i)去分母,將分式方程轉(zhuǎn)化為整式方程;
(ii)解所得的整式方程;
(iii)驗(yàn)根做答
。2)換元法
為了解決某些難度較大的代數(shù)問(wèn)題,可通過(guò)添設(shè)輔助元素(或者叫輔助未知數(shù))來(lái)解決。輔助元素的添設(shè)是使原來(lái)的未知量替換成新的未知量,從而把問(wèn)題化繁為簡(jiǎn),化難為易,使未知量向已知量轉(zhuǎn)化,這種思維方法就是換元法。換元法是解分式方程的一種常用技巧,利用它可以簡(jiǎn)化求解過(guò)程。
用換元法解分式方程的一般步驟:
。╥)設(shè)輔助未知數(shù),并用含輔助未知數(shù)的代數(shù)式去表示方程中另外的代數(shù)式;
。╥i)解所得到的關(guān)于輔助未知數(shù)的新方程,求出輔助未知數(shù)的值;
。╥ii)把輔助未知數(shù)的值代回原設(shè)中,求出原未知數(shù)的值;
。╥v)檢驗(yàn)做答。
注意:
。1)換元法不是解分式方程的一般方法,它是解一些特殊的分式方程的特殊方法。它的基本思想是用換元法把原方程化簡(jiǎn),把解一個(gè)比較復(fù)雜的方程轉(zhuǎn)化為解兩個(gè)比較簡(jiǎn)單的方程。
。2)分式方程解法的選擇順序是先特殊后一般,即先考慮能否用換元法解,不能用換元法解的,再用去分母法。
。3)無(wú)論用什么方法解分式方程,驗(yàn)根都是必不可少的重要步驟。
分式方程教案8
學(xué)習(xí)目標(biāo)
1、進(jìn)一步熟悉分式方程的解法;
2、會(huì)列分式方程解決實(shí)際問(wèn)題。
學(xué)習(xí)重點(diǎn)
實(shí)際生活中相關(guān)工程問(wèn)題類(lèi)的分式方程應(yīng)用題的分析應(yīng)用.
學(xué)習(xí)難點(diǎn)
將實(shí)際問(wèn)題中的等量關(guān)系用分式方程來(lái)表示并且求得結(jié)果.
學(xué)習(xí)過(guò)程
一、知識(shí)鏈接:
1、解方程
。1)(2)
2、八年級(jí)學(xué)生去距學(xué)校10千米的博物館參觀(guān),一部分同學(xué)騎自行車(chē)先走,過(guò)了20分鐘后,其余同學(xué)乘汽車(chē)出發(fā),結(jié)果他們同時(shí)到達(dá)。已知汽車(chē)的速度是騎車(chē)同學(xué)速度的2倍,求騎車(chē)同學(xué)的速度。
。1)此題中所包含的相等關(guān)系是:
、賍___________________________________________________;
、赺____________________________________________________
(2)若設(shè)騎車(chē)同學(xué)的速度為x千米/時(shí),則汽車(chē)所用的時(shí)間為_(kāi)_______________小時(shí),騎車(chē)同學(xué)所用的時(shí)間為_(kāi)_____________________小時(shí)。
。3)列出方程,并解答.
二、探究新知
例1兩個(gè)工程隊(duì)共同參與一項(xiàng)筑路工程,甲隊(duì)單獨(dú)施工一個(gè)月完成總工程的,這時(shí)增加了乙隊(duì),兩隊(duì)又共同工作了半個(gè)月,總工程全部完成,哪個(gè)隊(duì)的施工速度快?
練習(xí):甲,乙做某種機(jī)器零件,已知甲每小時(shí)比乙多做6個(gè),甲做90個(gè)所用的時(shí)間與乙做60個(gè)所用的時(shí)間相等。求甲,乙每小時(shí)各做多少個(gè)?
例2某次列車(chē)平均提速 vkm/h.用相同的時(shí)間,列車(chē)提速前行駛skm,提速后比提速前多行駛50km,提速前列車(chē)的平均速度為多少?
練習(xí):甲、乙兩人分別從距目的地6km和10km的兩地同時(shí)出發(fā),甲、乙的速度比是3:4,結(jié)果甲比乙提前20min到達(dá)目的地.求甲、乙的速度。
三、鞏固練習(xí):
1、某化肥廠(chǎng)原計(jì)劃每天生產(chǎn)化肥x噸,由于采取了新技術(shù),每天多生產(chǎn)化肥3噸,實(shí)際生產(chǎn)180噸與原計(jì)劃生產(chǎn)120噸的時(shí)間相等,那么適合x(chóng)的方程是().
2、部分學(xué)生自行組織春游,預(yù)計(jì)費(fèi)用120元,后來(lái)又有2名學(xué)生參加,總費(fèi)用不變,這樣每人可少交3元,若設(shè)原來(lái)這部分學(xué)生的人數(shù)是x人,則可列方程為.
3、某市為進(jìn)一步緩解交通擁堵現(xiàn)象,決定修建一條從市中心到飛機(jī)場(chǎng)的`輕軌鐵路.實(shí)際施工時(shí),每月的工效比原計(jì)劃提高了20%,結(jié)果提前5個(gè)月完成這一工程.求原計(jì)劃完成這一工程的時(shí)間是多少月?
4、我市某校為了創(chuàng)建書(shū)香校園,去年購(gòu)進(jìn)一批圖書(shū),經(jīng)了解,科普書(shū)的單價(jià)比文學(xué)書(shū)的單價(jià)多4元,用12000元購(gòu)進(jìn)的科普書(shū)與用8000元購(gòu)進(jìn)的文學(xué)書(shū)本數(shù)相等,今年文學(xué)書(shū)和科普書(shū)的單價(jià)和去年相比保持不變,該校打算用10000元再購(gòu)進(jìn)一批文學(xué)書(shū)和科普書(shū),問(wèn)購(gòu)進(jìn)文學(xué)書(shū)550本后至多還能購(gòu)進(jìn)多少本科普書(shū)?
5、某工廠(chǎng)加工某種產(chǎn)品,機(jī)器每小時(shí)加工產(chǎn)品的數(shù)量比手工每小時(shí)加工產(chǎn)品的數(shù)量的2倍多9件,若加工1800件這樣的產(chǎn)品,機(jī)器加工所用的時(shí)間是手工加工所用時(shí)間的倍,求手工每小時(shí)加工產(chǎn)品的數(shù)量.
四、課后反思:
分式方程教案9
一、教學(xué)內(nèi)容分析:
本節(jié)“分式方程”是人教版八年級(jí)下冊(cè)第16章第3節(jié)的內(nèi)容,是繼一元一次方程,二元一次方程組之后,初中階段所講授的又能一種方程的解法。本節(jié)課是在繼分式的內(nèi)容及分式的四則混合運(yùn)算之后所講述的一個(gè)內(nèi)容,其實(shí)際上就是分式與方程的綜合。因此本節(jié)課可以看作是一個(gè)綜合課,同時(shí)分式方程的解法也是初中階段的一個(gè)重點(diǎn)內(nèi)容,要求學(xué)生必須掌握。
二、學(xué)情分析:
在學(xué)習(xí)本章之前,學(xué)生已經(jīng)分兩次學(xué)習(xí)過(guò)整式方程(一元一次方程、二元一次方程組),他們對(duì)于整式方程特別是一元一次方程的解法及其基本思路(使方程逐步化為x=a的形式)已經(jīng)比較熟悉,而分式方程的未知數(shù)在分母中,它的解法比以前學(xué)過(guò)的方程復(fù)雜,需通過(guò)轉(zhuǎn)化思想,化分式方程為整式方程。
三、教學(xué)目標(biāo):
1、明確什么是分式方程?會(huì)區(qū)分整式方程與分式方程。
2、會(huì)解可化為一元一次方程的分式方程。
3、知道分式方程產(chǎn)生增根的原因,并學(xué)會(huì)如何驗(yàn)根。
四、教學(xué)重點(diǎn):
分式方程的解法。
教學(xué)難點(diǎn):理解分式方程可能產(chǎn)生增根的原因。
五、教學(xué)流程
1、憶一憶
(1)什么叫方程?什么叫方程的解?
(2)什么叫分式?
(3)結(jié)合具體例子說(shuō)出解一元一次方程的.步驟。
設(shè)計(jì)意圖:
讓學(xué)生由舊知識(shí)的回憶自然引出新知識(shí)便于學(xué)生理解接受。
2x-(x-1)/3=6 3x/4+(2x+1)/3=0
2、猜一猜
板書(shū)課題“分式方程”,讓學(xué)生猜一猜其概念,結(jié)合分式和方程的特點(diǎn)學(xué)生易得出:分母中含有未知數(shù)的方程叫分式方程。
設(shè)計(jì)意圖:
采用這種形式引入今天的話(huà)題,讓學(xué)生覺(jué)得不是在上數(shù)學(xué),而象是在拉家常,讓學(xué)生沒(méi)有負(fù)擔(dān),另外,學(xué)生在前面的回憶的基礎(chǔ)上很容易猜出來(lái)分式方程的概念。這樣使學(xué)生感受到數(shù)學(xué)的簡(jiǎn)單,從而樹(shù)立學(xué)好數(shù)學(xué)的信心。
3、辨一辨
判斷下列方程是不是分式方程,并說(shuō)出為什么?
1/(x-2)=3/x x(x-1)/x=-1 (3-x)/=x/2
2x+(x-1)/5=10 3/x=2/(x-3) (2x+1)/x+3x=1
指出:
分式方程與整式方程的區(qū)別(分母中含不含未知數(shù))
設(shè)計(jì)意圖:
學(xué)生說(shuō)出來(lái)了分式方程的概念還遠(yuǎn)遠(yuǎn)不夠,通過(guò)這道題使學(xué)生更進(jìn)一步的鞏固分式方程的概念。 (x-1)/x=-1這個(gè)方程可能學(xué)生會(huì)有爭(zhēng)議,讓學(xué)生說(shuō)出自己的意見(jiàn)后,老師可總結(jié),在判斷方是否為分式方程時(shí),不能化簡(jiǎn),以形式為準(zhǔn)。
4、想一想
提出該如何解方程呢?讓學(xué)生討論后得出:
通過(guò)去分母,方程兩邊同乘以各分母的最簡(jiǎn)公分母,回憶最簡(jiǎn)公分母的定義。
設(shè)計(jì)意圖:
讓學(xué)生自己去想該如何解,然后老師加以指導(dǎo),這樣會(huì)使學(xué)生感覺(jué)到自己真正是課堂的主人,從而全身心地投入學(xué)習(xí)。
5、試一試
(1)80/(x+5) (2)1/(x-5)=10/x.x-25
方程兩邊同乘以x(x+5)得:方程兩邊同乘以(x+5)(x-5)得:
80x=60(x+5) x+5=10
80x=60x+300 x=5
20x=300
x=15
提醒學(xué)生檢驗(yàn),對(duì)比兩個(gè)方程發(fā)現(xiàn)問(wèn)題。
設(shè)計(jì)意圖:
通過(guò)提醒學(xué)生檢驗(yàn),讓學(xué)生自己發(fā)現(xiàn)問(wèn)題。從而自然引出話(huà)題。
6、議一議
分式方程為什么會(huì)產(chǎn)生增根?(兩邊都乘以了一個(gè)零因式,但這個(gè)根是整式方程的解)所以分式方程的檢驗(yàn)代入最簡(jiǎn)公分母即可,提出,分式方程能不檢驗(yàn)嗎?通過(guò)討論使學(xué)生得出分式方程必須檢驗(yàn),因?yàn)榉质椒匠痰臋z驗(yàn)是為了看是不是增根,而不是檢驗(yàn)對(duì)錯(cuò),所以必須檢驗(yàn)。
7、說(shuō)一說(shuō)
老師幫忙總結(jié)出解分式方程的一般步驟:
1、程兩邊都乘最簡(jiǎn)公分母,約去分母,化為整式方程。
2、解這個(gè)整式方程。
3、把整式方程的根代入最簡(jiǎn)公分母,看它的值是否為零,使最簡(jiǎn)公分母為零的值是原方程的增根,必須舍去。
可簡(jiǎn)單記作:
一化二解三檢驗(yàn)。
設(shè)計(jì)意圖:
讓學(xué)生對(duì)所學(xué)知識(shí)上升到一個(gè)理論高度。
8、做一做
解方程:
(1)2/(x-3)=3/x (2)x/(x-1)-1=3/(x-1)(x+2)
體驗(yàn)解分式方程的完整過(guò)程。
分式方程教案10
總體說(shuō)明:本節(jié)共三個(gè)課時(shí),它分為分式方程的認(rèn)知,分式方程的解答,以及分式方程在實(shí)際問(wèn)題中的應(yīng)用。彼此之間由淺入深。是“實(shí)際問(wèn)題——&sh;&sh;分式方程建模&sh;&sh;&sh;——求解——解釋解的合理性”過(guò)程。本章在前面幾節(jié)陸續(xù)介紹了分式,分式的乘除,分式的加減,為本節(jié)解分式方程打下了扎實(shí)的基礎(chǔ)。同時(shí)應(yīng)注意對(duì)學(xué)生進(jìn)行過(guò)程性評(píng)價(jià),要延遲評(píng)價(jià)學(xué)生運(yùn)算的熟練程度,允許學(xué)生經(jīng)過(guò)一定時(shí)間達(dá)到《標(biāo)準(zhǔn)》要求的目標(biāo),把評(píng)價(jià)重點(diǎn)放在對(duì)算理的理解上。
一、學(xué)生知識(shí)狀況分析
學(xué)生的知識(shí)技能基礎(chǔ):學(xué)生在小學(xué)以及七年級(jí)學(xué)過(guò)解應(yīng)用題,以及在本章第三節(jié)所講述的分式加減時(shí)所引入的問(wèn)題的提出及問(wèn)題的解答。對(duì)實(shí)際問(wèn)題進(jìn)行建模有初步地了解,具備分析問(wèn)題,處理問(wèn)題的能力。
學(xué)生活動(dòng)經(jīng)驗(yàn)基礎(chǔ):在相關(guān)知識(shí)的學(xué)習(xí)過(guò)程中,學(xué)生已經(jīng)經(jīng)歷了一些問(wèn)題建;顒(dòng),解決了一些簡(jiǎn)單的現(xiàn)實(shí)問(wèn)題,感受到找出問(wèn)題等量關(guān)系的作用。獲得了解決實(shí)際問(wèn)題所必須的一些數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)基礎(chǔ)。同時(shí)在以前的數(shù)學(xué)學(xué)習(xí)中學(xué)生已經(jīng)經(jīng)歷了很多合作學(xué)習(xí)的經(jīng)驗(yàn),具備了一定的合作與交流的能力。
二、教學(xué)任務(wù)分析
教學(xué)時(shí)要有意識(shí)地進(jìn)一步提高學(xué)生的閱讀理解能力,鼓勵(lì)學(xué)生從多角度思考問(wèn)題,解釋所獲得結(jié)果的合理性。對(duì)于常用的數(shù)量關(guān)系,雖然學(xué)生以前大都接觸過(guò),但在本節(jié)的教學(xué)中仍要注意復(fù)習(xí)、總結(jié),并抓住用兩個(gè)已知量表示第三個(gè)量的表達(dá)式,引導(dǎo)學(xué)生舉一反三,進(jìn)一步提高分析問(wèn)題與解決問(wèn)題的能力。為此,本課時(shí)的教學(xué)目標(biāo)是:
知識(shí)與技能:
(1)通過(guò)對(duì)實(shí)際問(wèn)題的分析,感受分式方程刻畫(huà)現(xiàn)實(shí)世界的有效模型的意義。
。2)通過(guò)觀(guān)察,歸納分式方程的概念。
。3)體會(huì)到分式方程作為實(shí)際問(wèn)題的'模型,能夠根據(jù)實(shí)際問(wèn)題建立分式方程的數(shù)學(xué)模型,并能歸納出分式方程的描述性定義。
過(guò)程與方法:采用的是嘗試——?dú)w納相結(jié)合的方法,根據(jù)開(kāi)始提出的多個(gè)實(shí)際問(wèn)題。教師鼓勵(lì)學(xué)生進(jìn)行嘗試,利用具體情境中的等量關(guān)系列出分式方程,歸納出分式方程的定義。
情感與態(tài)度:在建立分式方程的數(shù)學(xué)模型的過(guò)程中培養(yǎng)能力和克服困難的勇氣,并從中獲得成就感,提高解決問(wèn)題的能力。
三、教學(xué)過(guò)程分析
本節(jié)課設(shè)計(jì)了6教學(xué)環(huán)節(jié):小麥實(shí)驗(yàn)田問(wèn)題——高速公路問(wèn)題——電腦網(wǎng)絡(luò)培訓(xùn)問(wèn)題——捐款問(wèn)題——管理問(wèn)題——課時(shí)小節(jié)。
第一環(huán)節(jié) 小麥實(shí)驗(yàn)田問(wèn)題
活動(dòng)內(nèi)容: 有兩塊面積相同的小麥試驗(yàn)田,第一塊使用原品種,第二塊使用新品種,分別收獲小麥9000g和15000g。已知第一塊試驗(yàn)田每公頃的產(chǎn)量比第二塊少3000g,分別求出這兩塊試驗(yàn)田每公頃的產(chǎn)量。你能找出這一問(wèn)題中的所有等量關(guān)系嗎?
如果設(shè)第一塊實(shí)驗(yàn)田每公頃的產(chǎn)量為 ,那么第二塊試驗(yàn)田每公頃的產(chǎn)量是___________g.
根據(jù)題意,可得方程:
_______________________________________________
活動(dòng)目的:為了讓學(xué)生經(jīng)歷從實(shí)際問(wèn)題抽象、概括分式方程這一“數(shù)學(xué)化”的過(guò)程,體會(huì)分式方程的模型在解決實(shí)際生活問(wèn)題中作用,設(shè)置了這么一個(gè)例題,關(guān)鍵是引導(dǎo)學(xué)生努力尋找問(wèn)題中的所有等量關(guān)系,發(fā)展學(xué)生分析問(wèn)題、解決問(wèn)題的能力。
教學(xué)效果:在第一問(wèn)中,同學(xué)們七嘴八舌,得到了許多等量關(guān)系。1、第一塊實(shí)驗(yàn)田的
面積=第二塊實(shí)驗(yàn)田的面積。2、每公頃的產(chǎn)量 。3、第一塊實(shí)驗(yàn)田每公頃的產(chǎn)量 第二塊試驗(yàn)田每公頃的產(chǎn)量。感覺(jué)到每人都能想一點(diǎn),但都不全。第三問(wèn)得到也有多種方案。例1、 ,2、 這時(shí)教師就應(yīng)適時(shí)引導(dǎo) , , 每步的實(shí)際意義是什么?這樣幫學(xué)生排除了第二種形式。
第二環(huán)節(jié) 高速公路問(wèn)題
活動(dòng)內(nèi)容:從甲地到乙地有兩條長(zhǎng)路:一條是全長(zhǎng)600 的普通公路,另一條是全長(zhǎng)480 的高速公路。某客車(chē)在高速公路上行駛的平均速度比在普通公路上快45 ,由高速公路從甲地到乙地所需的時(shí)間是由普通公路從甲地到乙地所需時(shí)間的一半,求該客車(chē)由高速公路從甲地到乙地所需的時(shí)間。
這一問(wèn)題中有哪些等量關(guān)系?
如果設(shè)客車(chē)由高速公路從甲地到乙地所需的時(shí)間為 ,那么它由普通公路從甲地到乙地所需的時(shí)間為 _________________ 。 根據(jù)題意,可得方程_______________________________________________
活動(dòng)目的:再次讓學(xué)生經(jīng)歷從實(shí)際問(wèn)題抽象、概括分式方程這一“數(shù)學(xué)化”的過(guò)程,體會(huì)分式方程的模型作用,設(shè)置了這么一個(gè)例題,關(guān)鍵是引導(dǎo)學(xué)生努力尋找問(wèn)題中的所有等量關(guān)系,發(fā)展學(xué)生分析問(wèn)題、解決問(wèn)題的能力。
教學(xué)效果:這次討論的聲音比第一次要少些,可能感覺(jué)比上一題容易。找出的等量關(guān)系有(1)600=客車(chē)在普通公路上行駛的平均速度 客車(chē)由普通公路從甲地到乙地的時(shí)間。
(2)480 =客車(chē)在高速公路上行駛的平均速度 客車(chē)由高速公路從甲地到乙地的時(shí)間。
。3)客車(chē)在高速公路上行駛的平均速度減去客車(chē)在普通公路上行駛的平均速度
。4)由高速公路從甲地到乙地的時(shí)間 由普通公路從甲地到乙地的時(shí)間。
同樣注意引導(dǎo)學(xué)生每一步的實(shí)際意義。
第三環(huán)節(jié) 電腦網(wǎng)絡(luò)培訓(xùn)問(wèn)題
活動(dòng)內(nèi)容:王軍同學(xué)準(zhǔn)備在課外活動(dòng)時(shí)間組織部分同學(xué)參加電腦網(wǎng)絡(luò)培訓(xùn),按原定的人數(shù)估計(jì)共需費(fèi)用300元。后因人數(shù)增加到原定人數(shù)的2倍,費(fèi)用享受了優(yōu)惠,一共只需要480元,參加活動(dòng)的每個(gè)同學(xué)平均分?jǐn)偟馁M(fèi)用比原計(jì)劃少4元,原定的人數(shù)是多少?這一問(wèn)題中有哪些等量關(guān)系?
如果設(shè)原定是 人,那么每人平均分?jǐn)俖_____________元。
人數(shù)增加到原定人數(shù)的2倍后,每人平均分?jǐn)俖________________元。
根據(jù)題意,可得方程_______________________________________________-.
活動(dòng)目的: 由淺入深,出了一道比上題難度大一點(diǎn)的問(wèn)題。還是為了訓(xùn)練學(xué)生找出問(wèn)題中的所有等量關(guān)系,發(fā)展學(xué)生分析問(wèn)題、解決問(wèn)題的能力。
教學(xué)效果:這次學(xué)生討論的聲音又大了點(diǎn),找出了如下的等量關(guān)系
。1) 實(shí)際參加活動(dòng)的人數(shù)=原定人數(shù) 。
。2) 原計(jì)劃每個(gè)同學(xué)平均分?jǐn)偟馁M(fèi)用=實(shí)際每個(gè)同學(xué)平均分?jǐn)偟馁M(fèi)用+4元。
根據(jù)題意:
第四環(huán)節(jié) 捐款問(wèn)題 這個(gè)題目不要求學(xué)生討論。讓學(xué)生獨(dú)立完成。
活動(dòng)內(nèi)容:為了幫助遭受自然災(zāi)害的地區(qū)重建家園。某學(xué)校號(hào)召同學(xué)們自愿捐款。已知第一次捐款總額為4800元,第二次捐款總額為5000元,第二次捐款人數(shù)比第一次多20人,而且兩次人均捐款恰好相等。如果設(shè)第一次捐款人數(shù)為 人,那么 滿(mǎn)足怎樣的方程?
活動(dòng)目的:這次讓學(xué)生獨(dú)立思考,不再借助別人的力量。根據(jù)前面幾題的練習(xí),看同學(xué)們對(duì)找等量關(guān)系到底掌握了多少。特別關(guān)注那些后進(jìn)生。以便及時(shí)調(diào)整教學(xué)進(jìn)度。
教學(xué)效果:
這次不允許討論,學(xué)生花的時(shí)間比上二題多些。當(dāng)然有的學(xué)生還是反應(yīng)很快,還有一部分學(xué)生則花了有5分鐘的時(shí)間。在這個(gè)班,說(shuō)明學(xué)生之間的差異還是很大的。
第五環(huán)節(jié) 管理問(wèn)題
活動(dòng)內(nèi)容 :某商場(chǎng)有管理人員40人,銷(xiāo)售人員80人,為了提高服務(wù)水平和銷(xiāo)售量,商場(chǎng)決定從管理人員中抽調(diào)一部分人充實(shí)銷(xiāo)售部分,使管理人員與銷(xiāo)售人員的人數(shù)比為1:4,那么應(yīng)抽調(diào)的管理人員數(shù) 滿(mǎn)足怎樣的方程?
活動(dòng)目的 :這個(gè)例題還是采取獨(dú)立思考的原則,主要是針對(duì)剛才教師發(fā)現(xiàn)上一題做慢,做錯(cuò)的同學(xué)。努力引導(dǎo)他們找到問(wèn)題中的等量關(guān)系。
教學(xué)效果:再次提醒剛才做錯(cuò)的和做的很慢的同學(xué)。讓他們找到等量關(guān)系。由于我的提醒和同學(xué)們的注意力高度集中,從檢查的效果來(lái)看,比上一次大有進(jìn)步。
第六環(huán)節(jié) 課時(shí)小節(jié)
活動(dòng)內(nèi)容 : 對(duì)于一個(gè)現(xiàn)實(shí)問(wèn)題 找到它的等量關(guān)系 建立分式方程 分母中含有未知數(shù)的方程叫做分式方程 同時(shí)注意每一步的實(shí)際意義。
活動(dòng)目的:讓學(xué)生感受到在實(shí)際問(wèn)題中,一定要找到它的等量關(guān)系,最好是越多越好。根據(jù)等量關(guān)系來(lái)列方程,這個(gè)方程不是唯一的,今天的分式方程就是以前沒(méi)有接觸過(guò)的。同時(shí)培養(yǎng)學(xué)生有條理的思考及其語(yǔ)言表達(dá)能力。
教學(xué)效果:小節(jié)最好由同學(xué)們討論,再派代表來(lái)敘述。而不是讓老師說(shuō)。教師只是順勢(shì)把學(xué)生的話(huà)進(jìn)行一個(gè)歸納。關(guān)注學(xué)生從現(xiàn)實(shí)生活中發(fā)現(xiàn)并提出數(shù)學(xué)問(wèn)題的能力,關(guān)注學(xué)生能否嘗試用不同方法尋求問(wèn)題中數(shù)量關(guān)系,并用分式方程表示,能否表達(dá)自己解決問(wèn)題的過(guò)程。大家基本都知道核心是找到等量關(guān)系,從而找到它的方程。
布置作業(yè):P87——隨堂練習(xí)第一題P88——習(xí)題3.6——1,2,3
四、教學(xué)反思
1、教材只是為教師提供最基本的教學(xué)素材,教師完全可以根據(jù)學(xué)生的實(shí)際情況進(jìn)行適當(dāng)調(diào)整。這些問(wèn)題的提出要根據(jù)本班學(xué)生的實(shí)際情況,學(xué)生能力強(qiáng)的,就要找一些難度大的。學(xué)生能力弱的,就要找一些難度小的。還可以因勢(shì)利導(dǎo)的編一些與同學(xué)們生活息息相關(guān)的例子。當(dāng)然,這些問(wèn)題的提出都必須以現(xiàn)實(shí)生活為背景。不要出一些與實(shí)際生活不符的純理論問(wèn)題。
2、課堂上要把激發(fā)學(xué)生學(xué)習(xí)的積極性放在首位,多讓學(xué)生說(shuō),幫助學(xué)生培養(yǎng)發(fā)展有條理的思考及其語(yǔ)言表達(dá)能力。同時(shí)要多注意困難學(xué)生的疑問(wèn)。不要讓一些思維活躍的學(xué)生的回答代替了其他同學(xué)的思考。使小組學(xué)習(xí)更有實(shí)效性。
3、列分式方程解決應(yīng)用問(wèn)題要比列一次方程(組)稍復(fù)雜一些。教學(xué)是要引導(dǎo)學(xué)生抓住尋找等量關(guān)系,恰當(dāng)選設(shè)未知數(shù)、確定主要等量關(guān)系、用含未知數(shù)的分式或整式表示未知量等關(guān)鍵環(huán)節(jié),細(xì)心分析問(wèn)題中的數(shù)量關(guān)系。一定要在這方面多花時(shí)間,要讓你“會(huì)”轉(zhuǎn)化為學(xué)生“會(huì)”。只要學(xué)生腦子里有分析這種問(wèn)題的“意識(shí)”這節(jié)課才有收獲。
分式方程教案11
教案
【教學(xué)目標(biāo)】
知識(shí)目標(biāo)
1.理解分式方程的意義.
2.了解解分式方程的基本思路和解法.
3.理解解分式方程時(shí)可能無(wú)解的原因,并掌握分式方程的驗(yàn)根方法.
能力目標(biāo)
經(jīng)歷“實(shí)際問(wèn)題——分式方程——整式方程”的過(guò)程,發(fā)展學(xué)生分析問(wèn)題、解決問(wèn)題的能力,滲透數(shù)學(xué)的轉(zhuǎn)化思想,培養(yǎng)學(xué)生的應(yīng)用意識(shí).
情感目標(biāo)
在活動(dòng)中培養(yǎng)學(xué)生樂(lè)于探究、合作學(xué)習(xí)的習(xí)慣,培養(yǎng)學(xué)生努力尋找解決問(wèn)題的進(jìn)取心,體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值.
【教學(xué)重難點(diǎn)】
重點(diǎn):解分式方程的基本思路和解法.
難點(diǎn):理解解分式方程時(shí)可能無(wú)解的原因.
【教學(xué)過(guò)程】
一、創(chuàng)設(shè)情境,導(dǎo)入新課
問(wèn)題:一艘輪船在靜水中的最大航速為30 km/h,它以最大航速沿江順流航行90 km所用時(shí)間,與以最大航速逆流航行60 km所用時(shí)間相等,江水的流速為多少?
分析:設(shè)江水的流速為v km/h,則輪船順流航行的速度為(30+v) km/h,逆流航行的速度為(30-v) km/h,順流航行90 km所用的時(shí)間為小時(shí),逆流航行60 km所用的時(shí)間為小時(shí).可列方程=.
這個(gè)方程和我們以前所見(jiàn)過(guò)的方程不同,它的主要特點(diǎn)是:分母中含有未知數(shù),這種方程就是我們今天要研究的'分式方程.
二、探究新知
1.教師提出下列問(wèn)題讓學(xué)生探究:
(1)方程=與以前所學(xué)的整式方程有何不同?
(2)什么叫分式方程?
(3)如何解分式方程=呢?怎樣檢驗(yàn)所求未知數(shù)的值是原方程的解?
(4)你能結(jié)合上述探究活動(dòng)歸納出解分式方程的基本思路和做法嗎?
(學(xué)生思考、討論后在全班交流)
2.根據(jù)學(xué)生探究結(jié)果進(jìn)行歸納:
(1)分式方程的定義(板書(shū)):
分母里含有未知數(shù)的方程叫分式方程.以前學(xué)過(guò)的方程都是整式方程
練習(xí):判斷下列各式哪個(gè)是分式方程.
(1)x+y=5; (2)=;
(3); (4)=0
在學(xué)生回答的基礎(chǔ)上指出(1)、(2)是整式方程,(3)是分式,(4)是分式方程.
(2)解分式方程=的基本思路是:將分式方程化為整式方程.具體做法是:“去分母”,即方程兩邊同乘最簡(jiǎn)公分母.這也是解分式方程的一般思路和做法.
3.仿照上面解分式方程的做法,嘗試解分式方程=,并檢驗(yàn)所得的解,你發(fā)現(xiàn)了什么?與你的同伴交流.
4.思考:上面兩個(gè)分式方程中,為什么=①去分母后所得整式方程的解就是①的解,而=②去分母后所得整式方程的解卻不是②的解呢?學(xué)生分組討論產(chǎn)生上述結(jié)果的原因,并互相交流.
5.歸納:
(1)增根:將分式方程變?yōu)檎椒匠虝r(shí),方程兩邊同乘以一個(gè)含有未知數(shù)的整式,并約去分母,有可能產(chǎn)生不適合原方程的解(或根),這種根通常稱(chēng)為增根.
(2)解分式方程必須進(jìn)行檢驗(yàn):將整式方程的解代入最簡(jiǎn)公分母,如果最簡(jiǎn)公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個(gè)解不是原分式方程的解.
三、鞏固練習(xí)
1.在下列方程中:
①=8+; ②=x;
、=; ④x-=0.
是分式方程的有( )
A.①和② B.②和③
C.③和④ D.④和①
2.解分式方程:(1)=;(2)=.
四、課堂小結(jié)
1.通過(guò)本節(jié)課的學(xué)習(xí),你有哪些收獲?
2.在本節(jié)課的學(xué)習(xí)過(guò)程中,你有什么體會(huì)?與同伴交流.
引導(dǎo)學(xué)生總結(jié)得出:
解分式方程的一般步驟:
(1)在方程的兩邊都乘以最簡(jiǎn)公分母,約去分母,化為整式方程.
(2)解這個(gè)整式方程.
(3)把整式方程的根代入最簡(jiǎn)公分母,看結(jié)果是不是零;使最簡(jiǎn)公分母為零的根不是原方程的解時(shí),必須舍去.
五、布置作業(yè)
課本152頁(yè)練習(xí).
第2課時(shí)
【教學(xué)目標(biāo)】
知識(shí)目標(biāo)
會(huì)分析題意找出相等關(guān)系,并能列出分式方程解決實(shí)際問(wèn)題.
ok3w_ads("s002");
同步練習(xí)
1.在某市舉行的大型商業(yè)演出活動(dòng)中,對(duì)團(tuán)體購(gòu)買(mǎi)門(mén)票思想優(yōu)惠,決定在原定票價(jià)的基礎(chǔ)上每張降價(jià)80元,這樣按原定票價(jià)需花6000元購(gòu)買(mǎi)的門(mén)票張數(shù),現(xiàn)在只花費(fèi)了4800元,求每張門(mén)票的原定價(jià)格?
2.為豐富校園文化生活,某校舉辦了成語(yǔ)大賽.學(xué)校準(zhǔn)備購(gòu)買(mǎi)一批成語(yǔ)詞典獎(jiǎng)勵(lì)獲獎(jiǎng)學(xué)生.購(gòu)買(mǎi)時(shí),商家給每本詞典打了九折,用2880元錢(qián)購(gòu)買(mǎi)的成語(yǔ)詞典,打折后購(gòu)買(mǎi)的數(shù)量比打折前多10本.求打折前每本筆記本的售價(jià)是多少元?
2.“六?一”兒童節(jié)前,某玩具商店根據(jù)市場(chǎng)調(diào)查,用2500元購(gòu)進(jìn)一批兒童玩具,上市后很快脫銷(xiāo),接著又用4500元購(gòu)進(jìn)第二批這種玩具,所購(gòu)數(shù)量是第一批數(shù)量的1.5倍,但每套進(jìn)價(jià)多了10元.
(1)求第一批玩具每套的進(jìn)價(jià)是多少元?
(2)如果這兩批玩具每套售價(jià)相同,且全部售完后總利潤(rùn)不低于25%,那么每套售價(jià)至少是多少元?
精選練習(xí)
列方程或方程組解應(yīng)用題:
據(jù)林業(yè)專(zhuān)家分析,樹(shù)葉在光合作用后產(chǎn)生的分泌物能夠吸附空氣中的一些懸浮顆粒物,具有滯塵凈化空氣的作用.已知一片銀杏樹(shù)葉一年的平均滯塵量比一片國(guó)槐樹(shù)葉一年的平均滯塵量的2倍少4毫克,若一年滯塵1000毫克所需的銀杏樹(shù)葉的片數(shù)與一年滯塵550毫克所需的國(guó)槐樹(shù)葉的片數(shù)相同,求一片國(guó)槐樹(shù)葉一年的平均滯塵量.
分式方程教案12
一、教學(xué)目標(biāo)
1.使學(xué)生掌握可化為一元二次方程的分式方程的解法,能用去分母的方法或換元的方法求此類(lèi)方程的解,并會(huì)驗(yàn)根.
2.通過(guò)本節(jié)課的教學(xué),向?qū)W生滲透轉(zhuǎn)化的數(shù)學(xué)思想方法;
3.通過(guò)本節(jié)的教學(xué),繼續(xù)向?qū)W生滲透事物是相互聯(lián)系及相互轉(zhuǎn)化的辨證唯物主義觀(guān)點(diǎn).
二、重點(diǎn)難點(diǎn)疑點(diǎn)及解決辦法
1.教學(xué)重點(diǎn):可化為一元二次方程的分式方程的解法.
2.教學(xué)難點(diǎn):解分式方程,學(xué)生不容易理解為什么必須進(jìn)行檢驗(yàn).
3.教學(xué)疑點(diǎn):學(xué)生容易忽視對(duì)分式方程的解進(jìn)行檢驗(yàn)通過(guò)對(duì)分式方程的解的剖析,進(jìn)一步使學(xué)生認(rèn)識(shí)解分式方程必須進(jìn)行檢驗(yàn)的重要性.
4.解決辦法:(l)分式方程的解法順序是:先特殊、后一般,即能用換元法的方程應(yīng)盡量用換元法解.(2)無(wú)論用去分母法解,還是換元法解分式方程,都必須進(jìn)行驗(yàn)根,驗(yàn)根是解分式方程必不可少的一個(gè)重要步驟.(3)方程的增根具備兩個(gè)特點(diǎn),①它是由分式方程所轉(zhuǎn)化成的整式方程的根②它能使原分式方程的公分母為0.
三、教學(xué)步驟
(一)教學(xué)過(guò)程
1.復(fù)習(xí)提問(wèn)
(1)什么叫做分式方程?解可化為一元一次方程的分式方程的方法與步驟是什么?
(2)解可化為一元一次方程的'分式方程為什么要檢驗(yàn)?檢驗(yàn)的方法是什么?
(3)解方程,并由此方程說(shuō)明解方程過(guò)程中產(chǎn)生增根的原因.
通過(guò)(1)、(2)、(3)的準(zhǔn)備,可直接點(diǎn)出本節(jié)的內(nèi)容:可化為一元二次方程的分式方程的解法相同.
在教師點(diǎn)出本節(jié)內(nèi)容的處理方法與以前所學(xué)的知識(shí)完全類(lèi)同后,讓全體學(xué)生對(duì)照前面復(fù)習(xí)過(guò)的分式方程的解,來(lái)進(jìn)一步加深對(duì)類(lèi)比法的理解,以便學(xué)生全面地參與到教學(xué)活動(dòng)中去,全面提高教學(xué)質(zhì)量.
在前面的基礎(chǔ)上,為了加深學(xué)生對(duì)新知識(shí)的理解,教師與學(xué)生共同分析解決例題,以提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力.
2.例題講解
例1 解方程.
分析 對(duì)于此方程的解法,不是教師講如何如何解,而是讓學(xué)生對(duì)已有知識(shí)的回憶,使用原來(lái)的方法,去通過(guò)試的手段來(lái)解決,在學(xué)生敘述過(guò)程中,發(fā)現(xiàn)問(wèn)題并及時(shí)糾正.
解:兩邊都乘以,得
去括號(hào),得
整理,得
解這個(gè)方程,得
檢驗(yàn):把代入,所以是原方程的根.
原方程的根是.
雖然,此種類(lèi)型的方程在初二上學(xué)期已學(xué)習(xí)過(guò),但由于相隔時(shí)間比較長(zhǎng),所以有一些學(xué)
生容易犯的類(lèi)型錯(cuò)誤應(yīng)加以強(qiáng)調(diào),如在第一步中.需強(qiáng)調(diào)方程兩邊同時(shí)乘以最簡(jiǎn)公分母.另
外,在把分式方程轉(zhuǎn)化為整式方程后,所得的一元二次方程有兩個(gè)相等的實(shí)數(shù)根,由于是解
分式方程,所以在下結(jié)論時(shí),應(yīng)強(qiáng)調(diào)取一即可,這一點(diǎn),教師應(yīng)給以強(qiáng)調(diào).
例2 解方程
分析:解此方程的關(guān)鍵是如何將分式方程轉(zhuǎn)化為整式方程,而轉(zhuǎn)化為整式方程的關(guān)鍵是
正確地確定出方程中各分母的最簡(jiǎn)公分母,由于此方程中的分母并非均按的降冪排列,所
以將方程的分母作一轉(zhuǎn)化,化為按字母終X進(jìn)行降暴排列,并對(duì)可進(jìn)行分解的分母進(jìn)行分解,從而確定出最簡(jiǎn)公分母.
解:方程兩邊都乘以,約去分母,得
整理后,得
解這個(gè)方程,得
檢驗(yàn):把代入,它不等于0,所以是原方程的根,把
代入它等于0,所以是增根.
原方程的根是
師生共同解決例1、例2后,教師引導(dǎo)學(xué)生與已學(xué)過(guò)的知識(shí)進(jìn)行比較.
例3 解方程.
分析:此題也可像前面例l、例2一樣通過(guò)去分母解決,學(xué)生可以試,但由于轉(zhuǎn)化后為一元四次方程,解起來(lái)難度很大,因此應(yīng)尋求簡(jiǎn)便方式,通過(guò)引導(dǎo)學(xué)生仔細(xì)觀(guān)察發(fā)現(xiàn),方程中含有未知數(shù)的部分 和互為倒數(shù),由此可設(shè) ,則可通過(guò)換元法來(lái)解題,通過(guò)求出
y后,再求原方程的未知數(shù)的值.
解:設(shè),那么,于是原方程變形為
兩邊都乘以y,得
解得
當(dāng)時(shí),,去分母,得
解得;
當(dāng)時(shí),,去分母整理,得
檢驗(yàn):把分別代入原方程的分母,各分母均不等于0.
原方程的根是
此題在解題過(guò)程中,經(jīng)過(guò)兩次轉(zhuǎn)化,所以在檢驗(yàn)中,把所得的未知數(shù)的值代入原方程中的分母進(jìn)行檢驗(yàn).
鞏固練習(xí):教材P49中1、2引導(dǎo)學(xué)筆答.
(二)總結(jié)、擴(kuò)展
對(duì)于小結(jié),教師應(yīng)引導(dǎo)學(xué)生做出.
本節(jié)內(nèi)容的小結(jié)應(yīng)從所學(xué)習(xí)的知識(shí)內(nèi)容、所學(xué)知識(shí)采用了什么數(shù)學(xué)思想及教學(xué)方法兩方面進(jìn)行.
本節(jié)我們通過(guò)類(lèi)比的方法,在已有的解可化為一元一次方程的分式方程的基礎(chǔ)上,學(xué)習(xí)了可化為一元二次方程的分式方程的解法,在具體方程的解法上,適用了轉(zhuǎn)化與換元的基本數(shù)學(xué)思想與基本數(shù)學(xué)方法.
此小結(jié)的目的,使學(xué)生能利用類(lèi)比的方法,使學(xué)過(guò)的知識(shí)系統(tǒng)化、網(wǎng)絡(luò)化,形成認(rèn)知結(jié)構(gòu),便于學(xué)生掌握.
四、布置作業(yè)
1.教材P50中A1、2、3.
2.教材P51中B1、2
五、板書(shū)設(shè)計(jì)
探究活動(dòng)1
解方程:
分析:若去分母,則會(huì)變?yōu)楦叽畏匠,這樣解起來(lái),比較繁,注意到分母中都有,可用換元法降次
設(shè),則原方程變?yōu)?/p>
或無(wú)解
經(jīng)檢驗(yàn):是原方程的解
探究活動(dòng)2
有農(nóng)藥一桶,倒出8升后,用水補(bǔ)滿(mǎn),然后又倒出4升,再用水補(bǔ)滿(mǎn),此時(shí)農(nóng)藥與水的比為18:7,求桶的容積.
解:設(shè)桶的容積為 升,第一次用水補(bǔ)滿(mǎn)后,濃度為 ,第二次倒出的農(nóng)藥數(shù)為4. 升,兩次共倒出的農(nóng)藥總量(8+4 )占原來(lái)農(nóng)藥 ,故
整理,
(舍去)
答:桶的容積為40升.
分式方程教案13
一、教學(xué)目標(biāo)
1。使學(xué)生掌握可化為一元二次方程的分式方程的解法,能用去分母的方法或換元的方法求此類(lèi)方程的解,并會(huì)驗(yàn)根。
2。通過(guò)本節(jié)課的教學(xué),向?qū)W生滲透“轉(zhuǎn)化”的數(shù)學(xué)思想方法;
3。通過(guò)本節(jié)的教學(xué),繼續(xù)向?qū)W生滲透事物是相互聯(lián)系及相互轉(zhuǎn)化的辨證唯物主義觀(guān)點(diǎn)。
二、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法
1。教學(xué)重點(diǎn):可化為一元二次方程的分式方程的解法。
2。教學(xué)難點(diǎn):解分式方程,學(xué)生不容易理解為什么必須進(jìn)行檢驗(yàn)。
3。教學(xué)疑點(diǎn):學(xué)生容易忽視對(duì)分式方程的解進(jìn)行檢驗(yàn)通過(guò)對(duì)分式方程的解的剖析,進(jìn)一步使學(xué)生認(rèn)識(shí)解分式方程必須進(jìn)行檢驗(yàn)的重要性。
4。解決辦法:(l)分式方程的解法順序是:先特殊、后一般,即能用換元法的方程應(yīng)盡量用換元法解。(2)無(wú)論用去分母法解,還是換元法解分式方程,都必須進(jìn)行驗(yàn)根,驗(yàn)根是解分式方程必不可少的一個(gè)重要步驟。(3)方程的增根具備兩個(gè)特點(diǎn),①它是由分式方程所轉(zhuǎn)化成的整式方程的根②它能使原分式方程的公分母為0。
三、教學(xué)步驟
。ㄒ唬┙虒W(xué)過(guò)程
1。復(fù)習(xí)提問(wèn)
。1)什么叫做分式方程?解可化為一元一次方程的分式方程的方法與步驟是什么?
。2)解可化為一元一次方程的分式方程為什么要檢驗(yàn)?檢驗(yàn)的方法是什么?
。3)解方程,并由此方程說(shuō)明解方程過(guò)程中產(chǎn)生增根的原因。
通過(guò)(1)、(2)、(3)的準(zhǔn)備,可直接點(diǎn)出本節(jié)的內(nèi)容:可化為一元二次方程的分式方程的解法相同。
在教師點(diǎn)出本節(jié)內(nèi)容的處理方法與以前所學(xué)的知識(shí)完全類(lèi)同后,讓全體學(xué)生對(duì)照前面復(fù)習(xí)過(guò)的分式方程的解,來(lái)進(jìn)一步加深對(duì)“類(lèi)比”法的理解,以便學(xué)生全面地參與到教學(xué)活動(dòng)中去,全面提高教學(xué)質(zhì)量。
在前面的基礎(chǔ)上,為了加深學(xué)生對(duì)新知識(shí)的理解,教師與學(xué)生共同分析解決例題,以提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。
2。例題講解
例1解方程。
分析對(duì)于此方程的解法,不是教師講如何如何解,而是讓學(xué)生對(duì)已有知識(shí)的回憶,使用原來(lái)的方法,去通過(guò)試的手段來(lái)解決,在學(xué)生敘述過(guò)程中,發(fā)現(xiàn)問(wèn)題并及時(shí)糾正。
解:兩邊都乘以,得
去括號(hào),得
整理,得
解這個(gè)方程,得
檢驗(yàn):把代入,所以是原方程的根。
∴原方程的根是。
雖然,此種類(lèi)型的方程在初二上學(xué)期已學(xué)習(xí)過(guò),但由于相隔時(shí)間比較長(zhǎng),所以有一些學(xué)生容易犯的類(lèi)型錯(cuò)誤應(yīng)加以強(qiáng)調(diào),如在第一步中。需強(qiáng)調(diào)方程兩邊同時(shí)乘以最簡(jiǎn)公分母。另外,在把分式方程轉(zhuǎn)化為整式方程后,所得的一元二次方程有兩個(gè)相等的實(shí)數(shù)根,由于是解分式方程,所以在下結(jié)論時(shí),應(yīng)強(qiáng)調(diào)取一即可,這一點(diǎn),教師應(yīng)給以強(qiáng)調(diào)。
例2解方程
分析:解此方程的`關(guān)鍵是如何將分式方程轉(zhuǎn)化為整式方程,而轉(zhuǎn)化為整式方程的關(guān)鍵是
正確地確定出方程中各分母的最簡(jiǎn)公分母,由于此方程中的分母并非均按的降冪排列,所以將方程的分母作一轉(zhuǎn)化,化為按字母終行降暴排列,并對(duì)可進(jìn)行分解的分母進(jìn)行分解,從而確定出最簡(jiǎn)公分母。
解:方程兩邊都乘以,約去分母,得
整理后,得
解這個(gè)方程,得
檢驗(yàn):把代入,它不等于0,所以是原方程的根,把
代入它等于0,所以是增根。
∴原方程的根是
師生共同解決例1、例2后,教師引導(dǎo)學(xué)生與已學(xué)過(guò)的知識(shí)進(jìn)行比較。
例3解方程。
分析:此題也可像前面例l、例2一樣通過(guò)去分母解決,學(xué)生可以試,但由于轉(zhuǎn)化后為一元四次方程,解起來(lái)難度很大,因此應(yīng)尋求簡(jiǎn)便方式,通過(guò)引導(dǎo)學(xué)生仔細(xì)觀(guān)察發(fā)現(xiàn),方程中含有未知數(shù)的部分和互為倒數(shù),由此可設(shè),則可通過(guò)換元法來(lái)解題,通過(guò)求出y后,再求原方程的未知數(shù)的值。
解:設(shè),那么,于是原方程變形為
兩邊都乘以y,得
解得
當(dāng)時(shí),,去分母,得
解得;
當(dāng)時(shí),,去分母整理,得,
檢驗(yàn):把分別代入原方程的分母,各分母均不等于0。
∴原方程的根是,
此題在解題過(guò)程中,經(jīng)過(guò)兩次“轉(zhuǎn)化”,所以在檢驗(yàn)中,把所得的未知數(shù)的值代入原方程中的分母進(jìn)行檢驗(yàn)。
鞏固練習(xí):教材P49中1、2引導(dǎo)學(xué)筆答。
。ǘ┛偨Y(jié)、擴(kuò)展
對(duì)于小結(jié),教師應(yīng)引導(dǎo)學(xué)生做出。
本節(jié)內(nèi)容的小結(jié)應(yīng)從所學(xué)習(xí)的知識(shí)內(nèi)容、所學(xué)知識(shí)采用了什么數(shù)學(xué)思想及教學(xué)方法兩方面進(jìn)行。
本節(jié)我們通過(guò)類(lèi)比的方法,在已有的解可化為一元一次方程的分式方程的基礎(chǔ)上,學(xué)習(xí)了可化為一元二次方程的分式方程的解法,在具體方程的解法上,適用了“轉(zhuǎn)化”與“換元”的基本數(shù)學(xué)思想與基本數(shù)學(xué)方法。
此小結(jié)的目的,使學(xué)生能利用“類(lèi)比”的方法,使學(xué)過(guò)的知識(shí)系統(tǒng)化、網(wǎng)絡(luò)化,形成認(rèn)知結(jié)構(gòu),便于學(xué)生掌握。
四、布置作業(yè)
1。教材P50中A1、2、3。
2。教材P51中B1、2
五、板書(shū)設(shè)計(jì)
探究活動(dòng)1
解方程:
分析:若去分母,則會(huì)變?yōu)楦叽畏匠,這樣解起來(lái),比較繁,注意到分母中都有,可用換元法降次
設(shè),則原方程變?yōu)?/p>
∴
∴或無(wú)解
∴
經(jīng)檢驗(yàn):是原方程的解
探究活動(dòng)2
有農(nóng)藥一桶,倒出8升后,用水補(bǔ)滿(mǎn),然后又倒出4升,再用水補(bǔ)滿(mǎn),此時(shí)農(nóng)藥與水的比為18:7,求桶的容積。
解:設(shè)桶的容積為升,第一次用水補(bǔ)滿(mǎn)后,濃度為,第二次倒出的農(nóng)藥數(shù)為4。升,兩次共倒出的農(nóng)藥總量(8+4· )占原來(lái)農(nóng)藥,故
整理,
(舍去)
答:桶的容積為40升。
分式方程教案14
教學(xué)目標(biāo):
1.學(xué)會(huì)根據(jù)定義判別分式方程與整式方程,了解分式方程增根產(chǎn)生的原因,掌握驗(yàn)根的方法。
2.掌握可化為一元一次方程或一元二次方程的分式方程的解法,會(huì)用去分母求方程的解。
教學(xué)重點(diǎn):去分母法解可化為一元一次方程或一元二次方程的分式方程。驗(yàn)根的方法。
教學(xué)難點(diǎn):驗(yàn)根的方法。分式方程增根產(chǎn)生的原因。
教學(xué)準(zhǔn)備:小黑板。
教學(xué)過(guò)程:
復(fù)習(xí)引入:下列方程中哪些分母中含有未知數(shù)?哪些分母中不含有未知數(shù)?
。1);(2);(3);(4);
。5);(6);(7);(8)。
講授新課:
1.由上述歸納出分式方程的概念:只含有分式或整式,且分母里含有未知數(shù)的方程叫做分式方程。方程兩邊都是整式的方程叫做整式方程。
2.討論分式方程的解法:
(1)復(fù)習(xí)解方程時(shí),怎樣去分母?
。2)講解例1:解方程(按課文講解)
歸納:解分式方程的'基本思想:
分式方程整式方程
。3)講解例2:解方程(按課文講解)
歸納:在去分母時(shí),有時(shí)可能產(chǎn)生不適合原方程的根,我們把它叫做增根。因此解分式方程必須檢驗(yàn),常把求得得根代入原方程的最簡(jiǎn)公分母,看它的值是否為0,若為0,則為增根,必須舍去;若不為0,則為原方程的根。
想一想:產(chǎn)生增根的原因是什么?
鞏固練習(xí):P1451t,2t。
課堂小結(jié):什么叫做分式方程?
解分式方程時(shí),為什么要檢驗(yàn)?怎樣檢驗(yàn)?
布置作業(yè):見(jiàn)作業(yè)本。
分式方程教案15
教學(xué)目標(biāo)
1。使學(xué)生能分析題目中的等量關(guān)系,掌握列分式方程解應(yīng)用題的方法和步驟,提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力;
2。通過(guò)列分式方程解應(yīng)用題,滲透方程的思想方法。
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):列分式方程解應(yīng)用題。
難點(diǎn):根據(jù)題意,找出等量關(guān)系,正確列出方程。
教學(xué)過(guò)程設(shè)計(jì)
一、復(fù)習(xí)
例 解方程:
。1)2x+xx+3=1; (2)15x=2×15 x+12;
。3)2(1x+1x+3)+x-2x+3=1。
解 (1)方程兩邊都乘以x(3+3),去分母,得
2(x+3)+x2=x2+3x,即2x-3x=-6
所以 x=6。
檢驗(yàn):當(dāng)x=6時(shí),x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。
。2)方程兩邊都乘以x(x+12),約去分母,得
15(x+12)=30x。
解這個(gè)整式方程,得
x=12。
檢驗(yàn):當(dāng)x=12時(shí),x(x+12)=12(12+12)≠0,所以x=12是原分式方程的根。
。3)整理,得
2x+2x+3+x-2x+3=1,即2x+2+x-2 x+3=1,
即 2x+xx+3=1。
方程兩邊都乘以x(x+3),去分母,得
2(x+3)+x2=x(x+3),
即 2x+6+x2=x2+3x,
亦即 2x-3x=-6。
解這個(gè)整式方程,得 x=6。
檢驗(yàn):當(dāng)x=6時(shí),x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。
二、新課
例1 一隊(duì)學(xué)生去校外參觀(guān),他們出發(fā)30分鐘時(shí),學(xué)校要把一個(gè)緊急通知傳給帶隊(duì)老師,派一名學(xué)生騎車(chē)從學(xué)校出發(fā),按原路追趕隊(duì)伍。若騎車(chē)的速度是隊(duì)伍進(jìn)行速度的2倍,這名學(xué)生追上隊(duì)伍時(shí)離學(xué)校的距離是15千米,問(wèn)這名學(xué)生從學(xué)校出發(fā)到追上隊(duì)伍用了多少時(shí)間?
請(qǐng)同學(xué)根據(jù)題意,找出題目中的等量關(guān)系。
答:騎車(chē)行進(jìn)路程=隊(duì)伍行進(jìn)路程=15(千米);
騎車(chē)的速度=步行速度的2倍;
騎車(chē)所用的時(shí)間=步行的時(shí)間-0。5小時(shí)。
請(qǐng)同學(xué)依據(jù)上述等量關(guān)系列出方程。
答案:
方法1 設(shè)這名學(xué)生騎車(chē)追上隊(duì)伍需x小時(shí),依題意列方程為
15x=2×15 x+12。
方法2 設(shè)步行速度為x千米/時(shí),騎車(chē)速度為2x千米/時(shí),依題意列方程為
15x-15 2x=12。
解 由方法1所列出的方程,已在復(fù)習(xí)中解出,下面解由方法2所列出的方程。
方程兩邊都乘以2x,去分母,得
30-15=x,
所以 x=15。
檢驗(yàn):當(dāng)x=15時(shí),2x=2×15≠0,所以x=15是原分式方程的根,并且符合題意。
所以騎車(chē)追上隊(duì)伍所用的時(shí)間為15千米 30千米/時(shí)=12小時(shí)。
答:騎車(chē)追上隊(duì)伍所用的時(shí)間為30分鐘。
指出:在例1中我們運(yùn)用了兩個(gè)關(guān)系式,即時(shí)間=距離速度,速度=距離 時(shí)間。
如果設(shè)速度為未知量,那么按時(shí)間找等量關(guān)系列方程;如果設(shè)時(shí)間為未知量,那么按
速度找等量關(guān)系列方程,所列出的方程都是分式方程。
例2 某工程需在規(guī)定日期內(nèi)完成,若由甲隊(duì)去做,恰好如期完成;若由乙隊(duì)去做,要超過(guò)規(guī)定日期三天完成。現(xiàn)由甲、乙兩隊(duì)合做兩天,剩下的工程由乙獨(dú)做,恰好在規(guī)定日期完成,問(wèn)規(guī)定日期是多少天?
分析;這是一個(gè)工程問(wèn)題,在工程問(wèn)題中有三個(gè)量,工作量設(shè)為s,工作所用時(shí)間設(shè)為t,工作效率設(shè)為m,三個(gè)量之間的關(guān)系是
s=mt,或t=sm,或m=st。
請(qǐng)同學(xué)根據(jù)題中的等量關(guān)系列出方程。
答案:
方法1 工程規(guī)定日期就是甲單獨(dú)完成工程所需天數(shù),設(shè)為x天,那么乙單獨(dú)完成工程所需的天數(shù)就是(x+3)天,設(shè)工程總量為1,甲的工作效率就是x1,乙的工作效率是1x+3。依題意,列方程為
2(1x+1x3)+x2-xx+3=1。
指出:工作效率的意義是單位時(shí)間完成的工作量。
方法2 設(shè)規(guī)定日期為x天,乙與甲合作兩天后,剩下的工程由乙單獨(dú)做,恰好在規(guī)定日期完成,因此乙的工作時(shí)間就是x天,根據(jù)題意列方程
2x+xx+3=1。
方法3 根據(jù)等量關(guān)系,總工作量—甲的工作量=乙的工作量,設(shè)規(guī)定日期為x天,則可列方程
1-2x=2x+3+x-2x+3。
用方法1~方法3所列出的方程,我們已在新課之前解出,這里就不再解分式方程了。重點(diǎn)是找等量關(guān)系列方程。
三、課堂練習(xí)
1。甲加工180個(gè)零件所用的時(shí)間,乙可以加工240個(gè)零件,已知甲每小時(shí)比乙少加工5個(gè)零件,求兩人每小時(shí)各加工的零件個(gè)數(shù)。
2。A,B兩地相距135千米,有大,小兩輛汽車(chē)從A地開(kāi)往B地,大汽車(chē)比小汽車(chē)早出發(fā)5小時(shí),小汽車(chē)比大汽車(chē)晚到30分鐘。已知大、小汽車(chē)速度的比為2:5,求兩輛汽車(chē)的速度。
答案:
1。甲每小時(shí)加工15個(gè)零件,乙每小時(shí)加工20個(gè)零件。
2。大,小汽車(chē)的速度分別為18千米/時(shí)和45千米/時(shí)。
四、小結(jié)
1。列分式方程解應(yīng)用題與列一元一次方程解應(yīng)用題的方法與步驟基本相同,不同點(diǎn)是,解分式方程必須要驗(yàn)根。一方面要看原方程是否有增根,另一方面還要看解出的根是否符合題意。原方程的增根和不符合題意的根都應(yīng)舍去。
2。列分式方程解應(yīng)用題,一般是求什么量,就設(shè)所求的量為未知數(shù),這種設(shè)未知數(shù)的方法,叫做設(shè)直接未知數(shù)。但有時(shí)可根據(jù)題目特點(diǎn)不直接設(shè)題目所求的量為未知量,而是設(shè)另外的量為未知量,這種設(shè)未知數(shù)的方法叫做設(shè)間接未知數(shù)。在列分式方程解應(yīng)用題時(shí),設(shè)間接未知數(shù),有時(shí)可使解答變得簡(jiǎn)捷。例如在課堂練習(xí)中的第2題,若題目的條件不變,把問(wèn)題改為求大、小兩輛汽車(chē)從A地到達(dá)B地各用的時(shí)間,如果設(shè)直接未知數(shù),即設(shè),小汽車(chē)從A地到B地需用時(shí)間為x小時(shí),則大汽車(chē)從A地到B地需(x+5-12)小時(shí),依題意,列方程
135 x+5-12:135x=2:5。
解這個(gè)分式方程,運(yùn)算較繁瑣。如果設(shè)間接未知數(shù),即設(shè)速度為未知數(shù),先求出大、小兩輛汽車(chē)的速度,再分別求出它們從A地到B地的時(shí)間,運(yùn)算就簡(jiǎn)便多了。
五、作業(yè)
1 填空:
。1)一件工作甲單獨(dú)做要m小時(shí)完成,乙單獨(dú)做要n小時(shí)完成,如果兩人合做,完成這件工作的時(shí)間是______小時(shí);
。2)某食堂有米m公斤,原計(jì)劃每天用糧a公斤,現(xiàn)在每天節(jié)約用糧b公斤,則可以比原計(jì)劃多用天數(shù)是______;
。3)把a(bǔ)千克的鹽溶在b千克的水中,那么在m千克這種鹽水中的含鹽量為_(kāi)_____千克。
2 列方程解應(yīng)用題。
。1)某工人師傅先后兩次加工零件各1500個(gè),當(dāng)?shù)诙渭庸r(shí),他革新了工具,改進(jìn)了操作方法,結(jié)果比第一次少用了18個(gè)小時(shí)。已知他第二次加工效率是第一次的2。5倍,求他第二次加工時(shí)每小時(shí)加工多少零件?
(2)某人騎自行車(chē)比步行每小時(shí)多走8千米,如果他步行12千米所用時(shí)間與騎車(chē)行36千米所用的時(shí)間相等,求他步行40千米用多少小時(shí)?
。3)已知輪船在靜水中每小時(shí)行20千米,如果此船在某江中順流航行72千米所用的時(shí)間與逆流航行48千米所用的時(shí)間相同,那么此江水每小時(shí)的流速是多少千米?
。4)A,B兩地相距135千米,兩輛汽車(chē)從A地開(kāi)往B地,大汽車(chē)比小汽車(chē)早出發(fā)5小時(shí),小汽車(chē)比大汽車(chē)晚到30分鐘。已知兩車(chē)的速度之比是5:2,求兩輛汽車(chē)各自的速度。
答案:
1 (1)mn m+n; (2)m a-b-ma; (3)ma a+b。
2 (1)第二次加工時(shí),每小時(shí)加工125個(gè)零件。
。2)步行40千米所用的時(shí)間為40 4=10(時(shí))。答步行40千米用了10小時(shí)。
。3)江水的流速為4千米/時(shí)。
課堂教學(xué)設(shè)計(jì)說(shuō)明
1。教學(xué)設(shè)計(jì)中,對(duì)于例
1,引導(dǎo)學(xué)生依據(jù)題意,找到三個(gè)等量關(guān)系,并用兩種不同的方法列出方程;對(duì)于例
2,引導(dǎo)學(xué)生依據(jù)題意,用三種不同的方法列出方程。這種安排,意在啟發(fā)學(xué)生能善于從不同的角度、不同的方向思考問(wèn)題,激勵(lì)學(xué)生在解決問(wèn)題中養(yǎng)成靈活的思維習(xí)慣。這就為在列分式方程解應(yīng)用題教學(xué)中培養(yǎng)學(xué)生的發(fā)散思維提供了廣闊的空間。
2。教學(xué)設(shè)計(jì)中體現(xiàn)了充分發(fā)揮例題的模式作用。
例1是行程問(wèn)題,其中距離是已知量,求速度(或時(shí)間);例2是工程問(wèn)題,其中工作總量為已知量,求完成工作量的時(shí)間(或工作效率)。這些都是運(yùn)用列分式方程求解的典型問(wèn)題。教學(xué)中引導(dǎo)學(xué)生深入分析已知量與未知量和題目中的等量關(guān)系,以及列方程求解的思路,以促使學(xué)生加深對(duì)模式的主要特征的理解和識(shí)另?別,讓學(xué)生弄清哪些類(lèi)型的問(wèn)題可借助于分式方程解答,求解的思路是什么。學(xué)生完成課堂練習(xí)和作業(yè),則是識(shí)別問(wèn)題類(lèi)型,能把面對(duì)的問(wèn)題和已掌握的模式在頭腦中建立聯(lián)系,探求解題思路。
3。通過(guò)列分式方程解應(yīng)用題數(shù)學(xué),滲透了方程的思想方法,從中使學(xué)生認(rèn)識(shí)到方程的思想方法是數(shù)學(xué)中解決問(wèn)題的一個(gè)銳利武器。方程的思想方法可以用“以假當(dāng)真”和“弄假成真”兩句話(huà)形容。如何通過(guò)設(shè)直接未知數(shù)或間接未知數(shù)的方法,假設(shè)所求的量為x,這時(shí)就把它作為一個(gè)實(shí)實(shí)在在的量。通過(guò)找等量關(guān)系列方程,此時(shí)是把已知量與假設(shè)的未知量平等看待,這就是“以假當(dāng)真”。通過(guò)解方程求得問(wèn)題的解,原先假設(shè)的未知量x就變成了確定的量,這就是“弄假成真”。
列分式方程解應(yīng)用題
教學(xué)目標(biāo)
1。使學(xué)生能分析題目中的等量關(guān)系,掌握列分式方程解應(yīng)用題的方法和步驟,提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力;
2。通過(guò)列分式方程解應(yīng)用題,滲透方程的思想方法。
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):列分式方程解應(yīng)用題。
難點(diǎn):根據(jù)題意,找出等量關(guān)系,正確列出方程。
教學(xué)過(guò)程設(shè)計(jì)
一、復(fù)習(xí)
例 解方程:
(1)2x+xx+3=1; (2)15x=2×15 x+12;
。3)2(1x+1x+3)+x-2x+3=1。
解 (1)方程兩邊都乘以x(3+3),去分母,得
2(x+3)+x2=x2+3x,即2x-3x=-6
所以 x=6。
檢驗(yàn):當(dāng)x=6時(shí),x(x+3)=6(6+3)≠0,所以x=6是原分式方程的.根。
。2)方程兩邊都乘以x(x+12),約去分母,得
15(x+12)=30x。
解這個(gè)整式方程,得
x=12。
檢驗(yàn):當(dāng)x=12時(shí),x(x+12)=12(12+12)≠0,所以x=12是原分式方程的根。
。3)整理,得
2x+2x+3+x-2x+3=1,即2x+2+x-2 x+3=1,
即 2x+xx+3=1。
方程兩邊都乘以x(x+3),去分母,得
2(x+3)+x2=x(x+3),
即 2x+6+x2=x2+3x,
亦即 2x-3x=-6。
解這個(gè)整式方程,得 x=6。
檢驗(yàn):當(dāng)x=6時(shí),x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。
二、新課
例1 一隊(duì)學(xué)生去校外參觀(guān),他們出發(fā)30分鐘時(shí),學(xué)校要把一個(gè)緊急通知傳給帶隊(duì)老師,派一名學(xué)生騎車(chē)從學(xué)校出發(fā),按原路追趕隊(duì)伍。若騎車(chē)的速度是隊(duì)伍進(jìn)行速度的2倍,這名學(xué)生追上隊(duì)伍時(shí)離學(xué)校的距離是15千米,問(wèn)這名學(xué)生從學(xué)校出發(fā)到追上隊(duì)伍用了多少時(shí)間?
請(qǐng)同學(xué)根據(jù)題意,找出題目中的等量關(guān)系。
答:騎車(chē)行進(jìn)路程=隊(duì)伍行進(jìn)路程=15(千米);
騎車(chē)的速度=步行速度的2倍;
騎車(chē)所用的時(shí)間=步行的時(shí)間-0。5小時(shí)。
請(qǐng)同學(xué)依據(jù)上述等量關(guān)系列出方程。
答案:
方法1 設(shè)這名學(xué)生騎車(chē)追上隊(duì)伍需x小時(shí),依題意列方程為
15x=2×15 x+12。
方法2 設(shè)步行速度為x千米/時(shí),騎車(chē)速度為2x千米/時(shí),依題意列方程為
15x-15 2x=12。
解 由方法1所列出的方程,已在復(fù)習(xí)中解出,下面解由方法2所列出的方程。
方程兩邊都乘以2x,去分母,得
30-15=x,
所以 x=15。
檢驗(yàn):當(dāng)x=15時(shí),2x=2×15≠0,所以x=15是原分式方程的根,并且符合題意。
所以騎車(chē)追上隊(duì)伍所用的時(shí)間為15千米 30千米/時(shí)=12小時(shí)。
答:騎車(chē)追上隊(duì)伍所用的時(shí)間為30分鐘。
指出:在例1中我們運(yùn)用了兩個(gè)關(guān)系式,即時(shí)間=距離速度,速度=距離 時(shí)間。
如果設(shè)速度為未知量,那么按時(shí)間找等量關(guān)系列方程;如果設(shè)時(shí)間為未知量,那么按
速度找等量關(guān)系列方程,所列出的方程都是分式方程。
例2 某工程需在規(guī)定日期內(nèi)完成,若由甲隊(duì)去做,恰好如期完成;若由乙隊(duì)去做,要超過(guò)規(guī)定日期三天完成,F(xiàn)由甲、乙兩隊(duì)合做兩天,剩下的工程由乙獨(dú)做,恰好在規(guī)定日期完成,問(wèn)規(guī)定日期是多少天?
分析;這是一個(gè)工程問(wèn)題,在工程問(wèn)題中有三個(gè)量,工作量設(shè)為s,工作所用時(shí)間設(shè)為t,工作效率設(shè)為m,三個(gè)量之間的關(guān)系是
s=mt,或t=sm,或m=st。
請(qǐng)同學(xué)根據(jù)題中的等量關(guān)系列出方程。
答案:
方法1 工程規(guī)定日期就是甲單獨(dú)完成工程所需天數(shù),設(shè)為x天,那么乙單獨(dú)完成工程所需的天數(shù)就是(x+3)天,設(shè)工程總量為1,甲的工作效率就是x1,乙的工作效率是1x+3。依題意,列方程為
2(1x+1x3)+x2-xx+3=1。
指出:工作效率的意義是單位時(shí)間完成的工作量。
方法2 設(shè)規(guī)定日期為x天,乙與甲合作兩天后,剩下的工程由乙單獨(dú)做,恰好在規(guī)定日期完成,因此乙的工作時(shí)間就是x天,根據(jù)題意列方程
2x+xx+3=1。
方法3 根據(jù)等量關(guān)系,總工作量—甲的工作量=乙的工作量,設(shè)規(guī)定日期為x天,則可列方程
1-2x=2x+3+x-2x+3。
用方法1~方法3所列出的方程,我們已在新課之前解出,這里就不再解分式方程了。重點(diǎn)是找等量關(guān)系列方程。
三、課堂練習(xí)
1。甲加工180個(gè)零件所用的時(shí)間,乙可以加工240個(gè)零件,已知甲每小時(shí)比乙少加工5個(gè)零件,求兩人每小時(shí)各加工的零件個(gè)數(shù)。
2。A,B兩地相距135千米,有大,小兩輛汽車(chē)從A地開(kāi)往B地,大汽車(chē)比小汽車(chē)早出發(fā)5小時(shí),小汽車(chē)比大汽車(chē)晚到30分鐘。已知大、小汽車(chē)速度的比為2:5,求兩輛汽車(chē)的速度。
答案:
1。甲每小時(shí)加工15個(gè)零件,乙每小時(shí)加工20個(gè)零件。
2。大,小汽車(chē)的速度分別為18千米/時(shí)和45千米/時(shí)。
四、小結(jié)
1。列分式方程解應(yīng)用題與列一元一次方程解應(yīng)用題的方法與步驟基本相同,不同點(diǎn)是,解分式方程必須要驗(yàn)根。一方面要看原方程是否有增根,另一方面還要看解出的根是否符合題意。原方程的增根和不符合題意的根都應(yīng)舍去。
2。列分式方程解應(yīng)用題,一般是求什么量,就設(shè)所求的量為未知數(shù),這種設(shè)未知數(shù)的方法,叫做設(shè)直接未知數(shù)。但有時(shí)可根據(jù)題目特點(diǎn)不直接設(shè)題目所求的量為未知量,而是設(shè)另外的量為未知量,這種設(shè)未知數(shù)的方法叫做設(shè)間接未知數(shù)。在列分式方程解應(yīng)用題時(shí),設(shè)間接未知數(shù),有時(shí)可使解答變得簡(jiǎn)捷。例如在課堂練習(xí)中的第2題,若題目的條件不變,把問(wèn)題改為求大、小兩輛汽車(chē)從A地到達(dá)B地各用的時(shí)間,如果設(shè)直接未知數(shù),即設(shè),小汽車(chē)從A地到B地需用時(shí)間為x小時(shí),則大汽車(chē)從A地到B地需(x+5-12)小時(shí),依題意,列方程
135 x+5-12:135x=2:5。
解這個(gè)分式方程,運(yùn)算較繁瑣。如果設(shè)間接未知數(shù),即設(shè)速度為未知數(shù),先求出大、小兩輛汽車(chē)的速度,再分別求出它們從A地到B地的時(shí)間,運(yùn)算就簡(jiǎn)便多了。
五、作業(yè)
1。填空:
。1)一件工作甲單獨(dú)做要m小時(shí)完成,乙單獨(dú)做要n小時(shí)完成,如果兩人合做,完成這件工作的時(shí)間是______小時(shí);
。2)某食堂有米m公斤,原計(jì)劃每天用糧a公斤,現(xiàn)在每天節(jié)約用糧b公斤,則可以比原計(jì)劃多用天數(shù)是______;
。3)把a(bǔ)千克的鹽溶在b千克的水中,那么在m千克這種鹽水中的含鹽量為_(kāi)_____千克。
2。列方程解應(yīng)用題。
。1)某工人師傅先后兩次加工零件各1500個(gè),當(dāng)?shù)诙渭庸r(shí),他革新了工具,改進(jìn)了操作方法,結(jié)果比第一次少用了18個(gè)小時(shí)。已知他第二次加工效率是第一次的2。5倍,求他第二次加工時(shí)每小時(shí)加工多少零件?
(2)某人騎自行車(chē)比步行每小時(shí)多走8千米,如果他步行12千米所用時(shí)間與騎車(chē)行36千米所用的時(shí)間相等,求他步行40千米用多少小時(shí)?
。3)已知輪船在靜水中每小時(shí)行20千米,如果此船在某江中順流航行72千米所用的時(shí)間與逆流航行48千米所用的時(shí)間相同,那么此江水每小時(shí)的流速是多少千米?
。4)A,B兩地相距135千米,兩輛汽車(chē)從A地開(kāi)往B地,大汽車(chē)比小汽車(chē)早出發(fā)5小時(shí),小汽車(chē)比大汽車(chē)晚到30分鐘。已知兩車(chē)的速度之比是5:2,求兩輛汽車(chē)各自的速度。
答案:
1。(1)mn m+n; (2)m a-b-ma; (3)ma a+b。
2。(1)第二次加工時(shí),每小時(shí)加工125個(gè)零件。
(2)步行40千米所用的時(shí)間為40 4=10(時(shí))。答步行40千米用了10小時(shí)。
。3)江水的流速為4千米/時(shí)。
課堂教學(xué)設(shè)計(jì)說(shuō)明
1 教學(xué)設(shè)計(jì)中,對(duì)于例1,引導(dǎo)學(xué)生依據(jù)題意,找到三個(gè)等量關(guān)系,并用兩種不同的方法列出方程;對(duì)于例2,引導(dǎo)學(xué)生依據(jù)題意,用三種不同的方法列出方程。這種安排,意在啟發(fā)學(xué)生能善于從不同的角度、不同的方向思考問(wèn)題,激勵(lì)學(xué)生在解決問(wèn)題中養(yǎng)成靈活的思維習(xí)慣。這就為在列分式方程解應(yīng)用題教學(xué)中培養(yǎng)學(xué)生的發(fā)散思維提供了廣闊的空間。
2 教學(xué)設(shè)計(jì)中體現(xiàn)了充分發(fā)揮例題的模式作用。例1是行程問(wèn)題,其中距離是已知量,求速度(或時(shí)間);例2是工程問(wèn)題,其中工作總量為已知量,求完成工作量的時(shí)間(或工作效率)。這些都是運(yùn)用列分式方程求解的典型問(wèn)題。教學(xué)中引導(dǎo)學(xué)生深入分析已知量與未知量和題目中的等量關(guān)系,以及列方程求解的思路,以促使學(xué)生加深對(duì)模式的主要特征的理解和識(shí)另?別,讓學(xué)生弄清哪些類(lèi)型的問(wèn)題可借助于分式方程解答,求解的思路是什么。學(xué)生完成課堂練習(xí)和作業(yè),則是識(shí)別問(wèn)題類(lèi)型,能把面對(duì)的問(wèn)題和已掌握的模式在頭腦中建立聯(lián)系,探求解題思路。
3 通過(guò)列分式方程解應(yīng)用題數(shù)學(xué),滲透了方程的思想方法,從中使學(xué)生認(rèn)識(shí)到方程的思想方法是數(shù)學(xué)中解決問(wèn)題的一個(gè)銳利武器。方程的思想方法可以用“以假當(dāng)真”和“弄假成真”兩句話(huà)形容。如何通過(guò)設(shè)直接未知數(shù)或間接未知數(shù)的方法,假設(shè)所求的量為x,這時(shí)就把它作為一個(gè)實(shí)實(shí)在在的量。通過(guò)找等量關(guān)系列方程,此時(shí)是把已知量與假設(shè)的未知量平等看待,這就是“以假當(dāng)真”。通過(guò)解方程求得問(wèn)題的解,原先假設(shè)的未知量x就變成了確定的量,這就是“弄假成真”。
【分式方程教案】相關(guān)文章:
分式方程教學(xué)反思02-18
《分式與分式方程復(fù)習(xí)》教學(xué)反思04-14
分式方程教學(xué)反思20篇01-03
分式方程教學(xué)反思15篇02-19
高中教案教案03-05
教案幼兒中班教案02-15
小班教案小班教案03-10
小班教案社會(huì)教案10-11
中班音樂(lè)教案劃船教案11-15