- 相關(guān)推薦
集合的概念教案
作為一位無(wú)私奉獻(xiàn)的人民教師,通常需要準(zhǔn)備好一份教案,編寫(xiě)教案有利于我們弄通教材內(nèi)容,進(jìn)而選擇科學(xué)、恰當(dāng)?shù)慕虒W(xué)方法。優(yōu)秀的教案都具備一些什么特點(diǎn)呢?以下是小編為大家整理的集合的概念教案,歡迎閱讀與收藏。
集合的概念教案1
教學(xué)類型:探究研究型
設(shè)計(jì)思路:通過(guò)一系列的猜想得出德.摩根律,但是這個(gè)結(jié)論僅僅是猜想,數(shù)學(xué)是一門(mén)科學(xué),所以需要論證它的正確性,因此本節(jié)通過(guò)剖析維恩圖的四部分來(lái)驗(yàn)證猜想的正確性,并對(duì)德摩根律進(jìn)行簡(jiǎn)單的應(yīng)用,因此我們制作了本微課。
教學(xué)過(guò)程:
一、片頭
(20秒以內(nèi))
內(nèi)容:你好,現(xiàn)在讓我們一起來(lái)學(xué)習(xí)《集合的運(yùn)算——自己探索也能發(fā)現(xiàn)的數(shù)學(xué)規(guī)律(第二講)》。
第 1 張ppt
12秒以內(nèi)
二、正文講解
。4分20秒左右)
1.引入:牛頓曾說(shuō)過(guò):“沒(méi)有大膽的猜測(cè),就做不出偉大的發(fā)現(xiàn)。”
上節(jié)課老師和大家學(xué)習(xí)了集合的運(yùn)算,得出了一個(gè)有趣的規(guī)律。課后,你舉例驗(yàn)證了這個(gè)規(guī)律嗎?
那么,這個(gè)規(guī)律是偶然的,還是一個(gè)恒等式呢?
第 2 張ppt
28秒以內(nèi)
2.規(guī)律的驗(yàn)證:
試用集合a,b的交集、并集、補(bǔ)集分別表示維恩圖中1,2,3,4及彩色部分的集合,通過(guò)剖析維恩圖來(lái)驗(yàn)證猜想的正確性使用
第 3 張ppt
2分10 秒以內(nèi)
3.抽象概括: 通過(guò)我們的觀察和驗(yàn)證,我們發(fā)現(xiàn)這個(gè)規(guī)律是一個(gè)恒等式。
而這個(gè)規(guī)律就是180年前著名的.英國(guó)數(shù)學(xué)家德摩根發(fā)現(xiàn)的。
為了紀(jì)念他,我們將它稱為德摩根律。
原來(lái)我們通過(guò)自己的探索也能發(fā)現(xiàn)這么偉大的數(shù)學(xué)規(guī)律。
第 4 張ppt
30秒以內(nèi)
4.例題應(yīng)用:使用例題形式,將的德摩根定律的結(jié)論加以應(yīng)用,讓學(xué)生更加熟悉集合的運(yùn)算
第 5 張ppt
1分20秒以內(nèi)
三、結(jié)尾
。20秒以內(nèi))
通過(guò)這在道題的解答,我們發(fā)現(xiàn)德摩根律為解答集合運(yùn)算問(wèn)題提供了更為簡(jiǎn)便的方法。
希望你在今后的學(xué)習(xí)中,勇于探索,發(fā)現(xiàn)更多有趣的規(guī)律。
第 6 張ppt
10秒以內(nèi)
教學(xué)反思(自我評(píng)價(jià))
學(xué)生在學(xué)習(xí)集合時(shí)會(huì)接觸到很多的集合運(yùn)算,往往學(xué)生覺(jué)得這是集合中的難點(diǎn),因此本節(jié)課通過(guò)一系列的猜想,以精彩的動(dòng)畫(huà)展示,讓學(xué)生在直觀的環(huán)境下輕松的學(xué)習(xí),提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,并通過(guò)層層深入的講解,讓學(xué)生進(jìn)一步加強(qiáng)對(duì)集合運(yùn)算的理解和應(yīng)用能力,效果非常好。
集合的概念教案2
【教學(xué)目標(biāo)】
1.了解集合、元素的概念,體會(huì)集合中元素的三個(gè)特征;
2.理解集合的作用,會(huì)根據(jù)已知條件構(gòu)造集合;
3.理解元素與集合的“屬于”和“不屬于”關(guān)系,并會(huì)正確表達(dá);
4.掌握常用數(shù)集及其記法;
5.了解數(shù)合的含義,記憶基本數(shù)集的符號(hào);
6.能正確選擇自然語(yǔ)言、圖形語(yǔ)言、集合語(yǔ)言(列舉法或描述法)描述不同的具體問(wèn)題,感受集合語(yǔ)言的意義和作用.
【導(dǎo)入新課】
一、實(shí)例引入:
軍訓(xùn)前學(xué)校通知:8月21日上午8點(diǎn),高一年級(jí)在操場(chǎng)集合進(jìn)行軍訓(xùn)動(dòng)員;試問(wèn)這個(gè)通知的對(duì)象是全體的高一學(xué)生還是個(gè)別學(xué)生?
在這里,集合是我們常用的一個(gè)詞語(yǔ),我們感興趣的是問(wèn)題中某些特定(是高一而不是高二、高三)對(duì)象的總體,而不是個(gè)別的對(duì)象,為此,我們將學(xué)習(xí)一個(gè)新的概念——集合,即是一些研究對(duì)象的總體.
二、問(wèn)題情境引入:
我們高一(3)班一共45人,其中班長(zhǎng)易雪芳,現(xiàn)有以下問(wèn)題:
、45人組成的班集體能否組成一個(gè)整體?
、瓢嚅L(zhǎng)易雪芳和45人所組成的班集體是什么關(guān)系?
、羌僭O(shè)張三是相鄰班的學(xué)生,問(wèn)他與高一(3)班是什么關(guān)系?
三、課前學(xué)習(xí)
1.學(xué)法指導(dǎo):
(1)閱讀教材的內(nèi)容感受集合的含義,理解集合與元素的關(guān)系,理解數(shù)集、空集的概念;
(2)本學(xué)時(shí)的重點(diǎn)是集合的含義、元素與集合之間的關(guān)系以及常用數(shù)集的符號(hào)表示、空集的意義及符號(hào);
(3)對(duì)于一個(gè)整體是否是集合的判斷的關(guān)鍵是對(duì)“確定”兩字的理解,學(xué)習(xí)時(shí)結(jié)合實(shí)例及教材上的例題進(jìn)行理解。記憶常用數(shù)集、空集的符號(hào)表示。
2.嘗試練習(xí):見(jiàn)《數(shù)學(xué)學(xué)案》P1
四、課堂探究:見(jiàn)《數(shù)學(xué)學(xué)案》P1
1.探究問(wèn)題:
探究1
探究2
2.知識(shí)鏈接:
3.拓展提升:
例1、下列各組對(duì)象能否組成集合?
(1)所有小于10的自然數(shù);
(2)某班個(gè)子高的同學(xué);
(3)方程的所有解;
(4)不等式的所有解;
(5)中國(guó)的直轄市;
(6)不等式的所有解;
(7)大于4的自然數(shù);
(8)我國(guó)的小河流。
例2、下列集合哪些是數(shù)集?再試著舉兩個(gè)數(shù)集,并使它們分別是有限集與無(wú)限集。
(1)1、3、5、7、9組成的集合;
(2)你班學(xué)號(hào)為單數(shù)的學(xué)生組成的集合。
例3、已知A是我國(guó)所有省的省會(huì)城市構(gòu)成的集合。用符號(hào)或填空。
(1)武漢_____A,北京_____A,南京_____A,鄭州_____A;
(2)-1_____N,8_____,6_____N,_____N;
(3)1_____Z,-2.45_____Z,_____Q,_____Q,_____R.
例4、判斷下列各句的說(shuō)法是否正確:
(1)所有在N中的元素都在N*中()
(2)所有在N中的元素都在Z中()
(3)所有不在N*中的數(shù)都不在Z中()
(4)所有不在Q中的實(shí)數(shù)都在R中()
(5)由既在R中又在N中的數(shù)組成的集合中一定包含數(shù)0()
(6)不在N中的數(shù)不能使方程4x=8成立()
答案:×,√,×,√,√,√
例5、已知集合P的元素為,若且-1P,求實(shí)數(shù)m的值
解:根據(jù),得若此時(shí)不滿足題意;若解得此時(shí)或(舍),綜上符合條件的.
點(diǎn)評(píng):本題綜合運(yùn)用集合的定義和元素與集合的關(guān)系解題,注意集合的性質(zhì)的運(yùn)用.
例6、設(shè)集合A={x|x=2k,k∈Z},B={x|x=2k+1,k∈Z},C={x|x=4k+1,k∈Z},又有a∈A,b∈B,判斷元素a+b與集合A、B和C的`關(guān)系.
解:因A={x|x=2k,k∈Z},B={x|x=2k+1,k∈Z},則集合A由偶數(shù)構(gòu)成,集合B由奇數(shù)構(gòu)成.
即a是偶數(shù),b是奇數(shù)設(shè)a=2m,b=2n+1(m∈Z,n∈Z)
則a+b=2(m+n)+1是奇數(shù),那么a+bA,a+b∈B.
又C={x|x=4k+1,k∈Z}是由部分奇數(shù)構(gòu)成且x=4k+1=2·2k+1.
故m+n是偶數(shù)時(shí),a+b∈C;m+n不是偶數(shù)時(shí),a+bC
綜上a+bA,a+b∈B,a+bC.
4.當(dāng)堂訓(xùn)練:見(jiàn)《數(shù)學(xué)學(xué)案》P2
5.歸納總結(jié):
(一)集合的有關(guān)概念
1.集合理論創(chuàng)始人康托爾稱集合為一些確定的、不同的東西的全體,人們
能意識(shí)到這些東西,并且能判斷一個(gè)給定的東西是否屬于這個(gè)總體.
2.一般地,我們把由某些確定的對(duì)象組成的總體叫做集合(set),也簡(jiǎn)稱集,組成集合的對(duì)象叫做這個(gè)集合的元素(element)
注意:集合的概念中,“某些確定的對(duì)象”,可以是任意的具體確定的事物,例如數(shù)、式、點(diǎn)、形、物等.
3.關(guān)于集合的元素的特征
(1)確定性:設(shè)A是一個(gè)給定的集合,x是某一個(gè)具體對(duì)象,則或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立.
(2)互異性:一個(gè)給定集合中的元素,指屬于這個(gè)集合的互不相同的個(gè)體(對(duì)象),因此,同一集合中不應(yīng)重復(fù)出現(xiàn)同一元素.
(3)無(wú)序性:給定一個(gè)集合與集合里面元素的順序無(wú)關(guān).
(4)集合相等:構(gòu)成兩個(gè)集合的元素完全一樣.
(二)元素與集合的關(guān)系
1.(1)如果a是集合A的元素,就說(shuō)a屬于(belongto)A,記作:a∈A;
(2)如果a不是集合A的元素,就說(shuō)a不屬于(notbelongto)A,記作:aA,
例如,我們A表示“1~20以內(nèi)的所有質(zhì)數(shù)”組成的集合,則有3∈A,,4A,等等.
2.集合與元素的字母表示:集合通常用大寫(xiě)的拉丁字母A,B,C…表示,集合的元素用小寫(xiě)的拉丁字母a,b,c,…表示.
3.常用的數(shù)集及記法:
非負(fù)整數(shù)集(或自然數(shù)集),記作N;
正整數(shù)集,記作Nx或N+;
整數(shù)集,記作Z;
有理數(shù)集,記作Q;
實(shí)數(shù)集,記作R.
課后鞏固――作業(yè)
1.習(xí)題1.1,第1-2題;
2.《數(shù)學(xué)學(xué)案》P3
3.預(yù)習(xí)集合的表示方法.
集合的概念教案3
1.1集合-集合的概念
教學(xué)目的:
(1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及記法
(2)使學(xué)生初步了解屬于關(guān)系的意義
(3)使學(xué)生初步了解有限集、無(wú)限集、空集的意義
教學(xué)重點(diǎn):集合的基本概念及表示方法
教學(xué)難點(diǎn):運(yùn)用集合的兩種常用表示方法列舉法與描述法,正確表示一些簡(jiǎn)單的集合
授課類型:新授課
課時(shí)安排:1課時(shí)
教 具:多媒體、實(shí)物投影儀
內(nèi)容分析:
1.集合是中學(xué)數(shù)學(xué)的一個(gè)重要的基本概念 在小學(xué)數(shù)學(xué)中,就滲透了集合的初步概念,到了初中,更進(jìn)一步應(yīng)用集合的語(yǔ)言表述一些問(wèn)題 例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點(diǎn)集 至于邏輯,可以說(shuō),從開(kāi)始學(xué)習(xí)數(shù)學(xué)就離不開(kāi)對(duì)邏輯知識(shí)的掌握和運(yùn)用,基本的邏輯知識(shí)在日常生活、學(xué)習(xí)、工作中,也是認(rèn)識(shí)問(wèn)題、研究問(wèn)題不可缺少的工具 這些可以幫助學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義,也是本章學(xué)習(xí)的基礎(chǔ)
把集合的初步知識(shí)與簡(jiǎn)易邏輯知識(shí)安排在高中數(shù)學(xué)的最開(kāi)始,是因?yàn)樵诟咧袛?shù)學(xué)中,這些知識(shí)與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語(yǔ)言的基礎(chǔ) 例如,下一章講函數(shù)的概念與性質(zhì),就離不開(kāi)集合與邏輯
本節(jié)首先從初中代數(shù)與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說(shuō)明 然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫(huà)圖表示集合的例子
這節(jié)課主要學(xué)習(xí)全章的引言和集合的基本概念 學(xué)習(xí)引言是引發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義 本節(jié)課的教學(xué)重點(diǎn)是集合的基本概念
集合是集合論中的原始的、不定義的概念 在開(kāi)始接觸集合的概念時(shí),主要還是通過(guò)實(shí)例,對(duì)概念有一個(gè)初步認(rèn)識(shí) 教科書(shū)給出的`一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡(jiǎn)稱集 這句話,只是對(duì)集合概念的描述性說(shuō)明
教學(xué)過(guò)程:
一、復(fù)習(xí)引入:
1.簡(jiǎn)介數(shù)集的發(fā)展,復(fù)習(xí)最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);
2.教材中的章頭引言;
3.集合論的創(chuàng)始人康托爾(德國(guó)數(shù)學(xué)家)(見(jiàn)附錄);
4.物以類聚,人以群分
5.教材中例子(P4)
二、講解新課:
閱讀教材第一部分,問(wèn)題如下:
(1)有那些概念?是如何定義的?
(2)有那些符號(hào)?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有關(guān)概念:
由一些數(shù)、一些點(diǎn)、一些圖形、一些整式、一些物體、一些人組成的.我們說(shuō),每一組對(duì)象的全體形成一個(gè)集合,或者說(shuō),某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡(jiǎn)稱集.集合中的每個(gè)對(duì)象叫做這個(gè)集合的元素.
定義:一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合.
1、集合的概念
(1)集合:某些指定的對(duì)象集在一起就形成一個(gè)集合(簡(jiǎn)稱集)
(2)元素:集合中每個(gè)對(duì)象叫做這個(gè)集合的元素
2、常用數(shù)集及記法
(1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合 記作N,
(2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集 記作N*或N+
(3)整數(shù)集:全體整數(shù)的集合 記作Z ,
(4)有理數(shù)集:全體有理數(shù)的集合 記作Q ,
(5)實(shí)數(shù)集:全體實(shí)數(shù)的集合 記作R
注:(1)自然數(shù)集與非負(fù)整數(shù)集是相同的,也就是說(shuō),自然數(shù)集包括數(shù)0
(2)非負(fù)整數(shù)集內(nèi)排除0的集 記作N*或N+ Q、Z、R等其它
數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z*
3、元素對(duì)于集合的隸屬關(guān)系
(1)屬于:如果a是集合A的元素,就說(shuō)a屬于A,記作aA
(2)不屬于:如果a不是集合A的元素,就說(shuō)a不屬于A,記作
4、集合中元素的特性
(1)確定性:按照明確的判斷標(biāo)準(zhǔn)給定一個(gè)元素或者在這個(gè)集合里,或者不在,不能模棱兩可。
(2)互異性:集合中的元素沒(méi)有重復(fù)
(3)無(wú)序性:集合中的元素沒(méi)有一定的順序(通常用正常的順序?qū)懗?
5、⑴集合通常用大寫(xiě)的拉丁字母表示,如A、B、C、P、Q
元素通常用小寫(xiě)的拉丁字母表示,如a、b、c、p、q
、频拈_(kāi)口方向,不能把a(bǔ)A顛倒過(guò)來(lái)寫(xiě)
三、練習(xí)題:
1、教材P5練習(xí)1、2
2、下列各組對(duì)象能確定一個(gè)集合嗎?
(1)所有很大的實(shí)數(shù) (不確定)
(2)好心的人 (不確定)
(3)1,2,2,3,4,5.(有重復(fù))
3、設(shè)a,b是非零實(shí)數(shù),那么 可能取的值組成集合的元素是_-2,0,2__
4、由實(shí)數(shù)x,-x,|x|, 所組成的集合,最多含( A )
(A)2個(gè)元素 (B)3個(gè)元素 (C)4個(gè)元素 (D)5個(gè)元素
5、設(shè)集合G中的元素是所有形如a+b (aZ, bZ)的數(shù),求證:
(1) 當(dāng)xN時(shí), x
(2) 若xG,yG,則x+yG,而 不一定屬于集合G
證明(1):在a+b (aZ, bZ)中,令a=xN,b=0,
則x= x+0* = a+b G,即xG
證明(2):∵xG,yG,
x= a+b (aZ, bZ),y= c+d (cZ, dZ)
x+y=( a+b )+( c+d )=(a+c)+(b+d)
∵aZ, bZ,cZ, dZ
(a+c) Z, (b+d) Z
x+y =(a+c)+(b+d) G,
又∵ =
且 不一定都是整數(shù),
= 不一定屬于集合G
四、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:
1.集合的有關(guān)概念:(集合、元素、屬于、不屬于)
2.集合元素的性質(zhì):確定性,互異性,無(wú)序性
3.常用數(shù)集的定義及記法
五、課后作業(yè):
六、板書(shū)設(shè)計(jì)(略)
總結(jié):制定教學(xué)計(jì)劃的主要目的是為了全面了解學(xué)生的數(shù)學(xué)學(xué)習(xí)歷程,激勵(lì)學(xué)生的學(xué)習(xí)和改進(jìn)教師的教學(xué)。希望上面的高一數(shù)學(xué)教學(xué)設(shè)計(jì),能受到大家的歡迎!
集合的概念教案4
一、說(shuō)教材
。1)說(shuō)教材的內(nèi)容和地位
本次說(shuō)課的內(nèi)容是人教版高一數(shù)學(xué)必修一第一單元第一節(jié)《集合》(第一課時(shí))。集合這一課里,首先從初中代數(shù)與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說(shuō)明。然后,介紹了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知識(shí)安排在高中數(shù)學(xué)的最開(kāi)始,是因?yàn)樵诟咧袛?shù)學(xué)中,這些知識(shí)與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握以及使用數(shù)學(xué)語(yǔ)言的基礎(chǔ)。從知識(shí)結(jié)構(gòu)上來(lái)說(shuō)是為了引入函數(shù)的定義。因此在高中數(shù)學(xué)的模塊中,集合就顯得格外的舉足輕重了。
。2)說(shuō)教學(xué)目標(biāo)
根據(jù)教材結(jié)構(gòu)和內(nèi)容以及教材地位和作用,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)與心理特征,依據(jù)新課標(biāo)制定如下教學(xué)目標(biāo):
1.知識(shí)與技能:掌握集合的基本概念及表示方法。了解"屬于"關(guān)系的意義,掌握集合元素的特征。
2.過(guò)程與方法:通過(guò)情景設(shè)置提出問(wèn)題,揭示課題,培養(yǎng)學(xué)生主動(dòng)探究新知的習(xí)慣。并通過(guò)"自主、合作與探究"實(shí)現(xiàn)"一切以學(xué)生為中心"的理念。
3.情感態(tài)度與價(jià)值觀:感受數(shù)學(xué)的人文價(jià)值,提高學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣,由集合的.學(xué)習(xí)感受數(shù)學(xué)的簡(jiǎn)潔美與和諧統(tǒng)一美。同時(shí)通過(guò)自主探究領(lǐng)略獲取新知識(shí)的喜悅。
。3)說(shuō)教學(xué)重點(diǎn)和難點(diǎn)
依據(jù)課程標(biāo)準(zhǔn)和學(xué)生實(shí)際,我確定本課的教學(xué)重點(diǎn)為
教學(xué)重點(diǎn):集合的基本概念及元素特征。
教學(xué)難點(diǎn):掌握集合元素的三個(gè)特征,體會(huì)元素與集合的屬于關(guān)系。
二、說(shuō)教法和學(xué)法
接下來(lái)則是說(shuō)教法、學(xué)法
教法與學(xué)法是互相聯(lián)系和統(tǒng)一的,不能孤立去研究。什么樣的教法必帶來(lái)相應(yīng)的學(xué)法,以遵循啟發(fā)性原則為出發(fā)點(diǎn),就本節(jié)課而言,我采用"生活實(shí)例與數(shù)學(xué)實(shí)例"相結(jié)合,"師生互動(dòng)與課堂布白"相輔助的方法。通過(guò)不同層次的練習(xí)體驗(yàn),憑借有趣、實(shí)用的教學(xué)手段,突出重點(diǎn),突破難點(diǎn)。然而,學(xué)生是學(xué)習(xí)的主人,以學(xué)生為主體,創(chuàng)造條件讓學(xué)生參與探究活動(dòng),不僅提高了學(xué)生探究能力,更讓學(xué)生獲得學(xué)習(xí)的技能和激發(fā)學(xué)生的學(xué)習(xí)興趣。因此,本次活動(dòng)采用的學(xué)法有自主探究、觀察發(fā)現(xiàn)、合作交流、歸納總結(jié)等。
總之,不管采取什么教法和學(xué)法,每節(jié)課都應(yīng)不斷研究學(xué)生的學(xué)習(xí)心理機(jī)制,不斷優(yōu)化教師本身的教學(xué)行為,自始至終以學(xué)生為主體,為學(xué)生創(chuàng)造和諧的課堂氛圍。
三、說(shuō)教學(xué)過(guò)程
接著我來(lái)說(shuō)一下最重要的部分,本節(jié)課的教學(xué)過(guò)程:
這節(jié)課的流程主要分為六個(gè)環(huán)節(jié):創(chuàng)設(shè)情境(引入目標(biāo))、自主探究(感知目標(biāo))、討論辨析(理解目標(biāo))、變式訓(xùn)練(鞏固目標(biāo))、課堂小結(jié)(自我評(píng)價(jià))、作業(yè)布置(反饋矯正)。上述六個(gè)環(huán)節(jié)由淺入深,層層遞進(jìn)。 多層次、多角度地加深對(duì)概念的理解。 提高學(xué)生學(xué)習(xí)的興趣,以達(dá)到良好的教學(xué)效果。
第一環(huán)節(jié):創(chuàng)設(shè)問(wèn)題情境,引入目標(biāo)
課堂開(kāi)始我將提出兩個(gè)問(wèn)題:
問(wèn)題1:班級(jí)有20名男生,16名女生,問(wèn)班級(jí)一共多少人?
問(wèn)題2:某次運(yùn)動(dòng)會(huì)上,班級(jí)有20人參加田賽,16人參加徑賽,問(wèn)一共多少人參加比賽?
這里我會(huì)讓學(xué)生以小組討論的形式進(jìn)行討論問(wèn)題,事實(shí)上小組合作的形式是本節(jié)課主要形式。
待學(xué)生討論完畢以后我將作歸納總結(jié):?jiǎn)栴}2已無(wú)法用學(xué)過(guò)的知識(shí)加以解釋,這是與集合有關(guān)的問(wèn)題,因此需用集合的語(yǔ)言加以描述(同時(shí)我將板書(shū)標(biāo)題:集合)。
安排這一過(guò)程的意圖是為了從實(shí)際問(wèn)題引入,讓學(xué)生了解數(shù)學(xué)來(lái)源于實(shí)際。從而激發(fā)學(xué)生參與課堂學(xué)習(xí)的欲望。
很自然地進(jìn)入到第二環(huán)節(jié):自主探究
讓學(xué)生閱讀教材,并思考下列問(wèn)題:
。1)有那些概念?
。2)有那些符號(hào)?
。3)集合中元素的特性是什么?
安排這一過(guò)程的意圖是給學(xué)生提供活動(dòng)空間,讓主體主動(dòng)建構(gòu)自己的知識(shí)結(jié)構(gòu)。培養(yǎng)學(xué)生的探究能力。
讓學(xué)生自主探究之后將進(jìn)入第三環(huán)節(jié):討論辨析
集合的概念教案5
目標(biāo):
。1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及其記法
。2)使學(xué)生初步了解“屬于”關(guān)系的意義
(3)使學(xué)生初步了解有限集、無(wú)限集、空集的意義
重點(diǎn):集合的基本概念
教學(xué)過(guò)程:
1.引入
。1)章頭導(dǎo)??
(2)集合論與集合論的創(chuàng)始者-----康托爾(有關(guān)介紹可引用附錄中的內(nèi)容)
2.講授新課
閱讀教材,并思考下列問(wèn)題:
(1)有那些概念?
(2)有那些符號(hào)?
。3)集合中元素的特性是什么?
。4)如何給集合分類?
(一)有關(guān)概念:
1、集合的概念
(1)對(duì)象:我們可以感覺(jué)到的客觀存在以及我們思想中的事物或抽象符號(hào),都可以稱作對(duì)象.
(2)集合:把一些能夠確定的不同的對(duì)象看成一個(gè)整體,就說(shuō)這個(gè)整體是由這些對(duì)象的全體構(gòu)成的集合.
(3)元素:集合中每個(gè)對(duì)象叫做這個(gè)集合的元素.
集合通常用大寫(xiě)的拉丁字母表示,如a、b、c、……元素通常用小寫(xiě)的拉丁字母表示,如a、b、c、……
2、元素與集合的關(guān)系
(1)屬于: 如果a是集合a的元素,就說(shuō)a屬于a,記作a∈a
。2)不屬于:如果a不是集合a的'元素,就說(shuō)a不屬于a,記作
要注意“∈”的方向,不能把a(bǔ)∈a顛倒過(guò)來(lái)寫(xiě).
3、集合中元素的特性
。1)確定性:給定一個(gè)集合,任何對(duì)象是不是這個(gè)集合的元素是確定的了.
。2)互異性:集合中的元素一定是不同的
。3)無(wú)序性:集合中的元素沒(méi)有固定的順序.
4、集合分類
根據(jù)集合所含元素個(gè)屬不同,可把集合分為如下幾類:
。1)把不含任何元素的集合叫做空集Ф
(2)含有有限個(gè)元素的集合叫做有限集
。3)含有無(wú)窮個(gè)元素的集合叫做無(wú)限集
注:應(yīng)區(qū)分符號(hào)的含義
5、常用數(shù)集及其表示方法
。1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合.記 作n
。2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集.記作n* 或n+
。3)整數(shù)集:全體整數(shù)的集合.記作z
。4)有理數(shù)集:全體有理數(shù)的集合.記作q
。5)實(shí)數(shù)集:全體實(shí)數(shù)的集合.記作r
注:(1)自然數(shù)集包括數(shù)0.
。2)非負(fù)整數(shù)集內(nèi)排除0的集.記作n*或n+,q、z、r等其它數(shù)集內(nèi)排除0的集,也這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成z*
課堂練習(xí):教材第5頁(yè)練習(xí)a、b
小結(jié):本節(jié)課 我們了解集合論的發(fā)展,學(xué)習(xí)了集合的概念及有關(guān)性質(zhì)
課后作業(yè):第十頁(yè)習(xí)題1-1b第3題
集合的概念教案6
一、教材分析(說(shuō)教材):
1. 教材所處的地位和作用:
本節(jié)內(nèi)容在全書(shū)和章節(jié)中的作用是:《 》是 中數(shù)學(xué)教材第 冊(cè)第 章第 節(jié)內(nèi)容。在此之前學(xué)生已學(xué)習(xí)了 基礎(chǔ),這為過(guò)渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容是在 中,占據(jù) 的地位。以及為其他學(xué)科和今后的學(xué)習(xí)打下基礎(chǔ)。
2. 教育教學(xué)目標(biāo):
根據(jù)上述教材分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,制定如下教學(xué)目標(biāo):
(1)知識(shí)目標(biāo):
(2)能力目標(biāo):通過(guò)教學(xué)初步培養(yǎng)學(xué)生分析問(wèn)題,解決實(shí)際問(wèn)題,讀圖分析,收集處理信息,團(tuán)結(jié)協(xié)作,語(yǔ)言表達(dá)能力以及通過(guò)師生雙邊活動(dòng),初步培養(yǎng)學(xué)生運(yùn)用知識(shí)的能力,培養(yǎng)學(xué)生加強(qiáng)理論聯(lián)系實(shí)際的能力。
(3)情感目標(biāo):通過(guò)教學(xué)引導(dǎo)學(xué)生從現(xiàn)實(shí)的生活經(jīng)歷與體驗(yàn)出發(fā),激發(fā)學(xué)生學(xué)習(xí)興趣。
3. 重點(diǎn),難點(diǎn)以及確定依據(jù):
下面,為了講清重難上點(diǎn),使學(xué)生能達(dá)到本節(jié)課設(shè)定的目標(biāo),再?gòu)慕谭ê蛯W(xué)法上談?wù)劊?/p>
二、教學(xué)策略(說(shuō)教法)
1. 教學(xué)手段:
如何突出重點(diǎn),突破難點(diǎn),從而實(shí)現(xiàn)教學(xué)目標(biāo)。在教學(xué)過(guò)程中擬計(jì)劃進(jìn)行如下操作:教學(xué)方法;诒竟(jié)課的特點(diǎn): 應(yīng)著重采用 的教學(xué)方法。
2. 教學(xué)方法及其理論依據(jù):堅(jiān)持“以學(xué)生為主體,以教師為主導(dǎo)”的原則,根據(jù)學(xué)生的心理發(fā)展規(guī)律,采用學(xué)生參與程度高的學(xué)導(dǎo)式討論教學(xué)法。在學(xué)生看書(shū),討論的基礎(chǔ)上,在老師啟發(fā)引導(dǎo)下,運(yùn)用問(wèn)題解決式教法,師生交談法,圖像信號(hào)法,問(wèn)答式,課堂討論法。在采用問(wèn)答法時(shí),特別注重不同難度的問(wèn)題,提問(wèn)不同層次的學(xué)生,面向全體,使基礎(chǔ)差的學(xué)生也能有表現(xiàn)機(jī)會(huì),培養(yǎng)其自信心,激發(fā)其學(xué)習(xí)熱情。有效的開(kāi)發(fā)各層次學(xué)生的潛在智能,力求使學(xué)生能在原有的基礎(chǔ)上得到發(fā)展。同時(shí)通過(guò)課堂練習(xí)和課后作業(yè),啟發(fā)學(xué)生從書(shū)本知識(shí)回到社會(huì)實(shí)踐。提供給學(xué)生與其生活和周?chē)澜缑芮邢嚓P(guān)的數(shù)學(xué)知識(shí),學(xué)習(xí)基礎(chǔ)性的知識(shí)和技能,在教學(xué)中積極培養(yǎng)學(xué)生學(xué)習(xí)興趣和動(dòng)機(jī),明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,激發(fā)來(lái)自學(xué)生主體的最有力的動(dòng)力。
3. 學(xué)情分析:(說(shuō)學(xué)法)
(1)學(xué)生特點(diǎn)分析:中學(xué)生心理學(xué)研究指出,高中階段是(查同中學(xué)生心發(fā)展情況)抓住學(xué)生特點(diǎn),積極采用形象生動(dòng),形式多樣的教學(xué)方法和學(xué)生廣泛的積極主動(dòng)參與的學(xué)習(xí)方式,定能激發(fā)學(xué)生興趣,有效地培養(yǎng)學(xué)生能力,促進(jìn)學(xué)生個(gè)性發(fā)展。生理上表少年好動(dòng),注意力易分散。
(2) 知識(shí)障礙上:知識(shí)掌握上,學(xué)生原有的知識(shí) ,許多學(xué)生出現(xiàn)知識(shí)遺忘,所以應(yīng)全面系統(tǒng)的去講述;學(xué)生學(xué)習(xí)本節(jié)課的知識(shí)障礙, 知識(shí) 學(xué)生不易理解,所以教學(xué)中老師應(yīng)予以簡(jiǎn)單明白,深入淺出的分析。
(3)動(dòng)機(jī)和興趣上:明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,激發(fā)來(lái)自學(xué)生主體的最有力的動(dòng)力。
最后我來(lái)具體談?wù)勥@一堂課的教學(xué)過(guò)程:
4. 教學(xué)程序及設(shè)想:
(1)由 引入:把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問(wèn)題,讓學(xué)生產(chǎn)生強(qiáng)烈的問(wèn)題意識(shí),使學(xué)生的整個(gè)學(xué)習(xí)過(guò)程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過(guò)程。在實(shí)際情況下學(xué)習(xí)可以使學(xué)生利用已有的知識(shí)與經(jīng)驗(yàn),同化和索引出當(dāng)肖學(xué)習(xí)的新知識(shí),這樣獲取知識(shí),不但易于保持,而且易于遷移到陌生的問(wèn)題情境中。
(2)由實(shí)例得出本課新的知識(shí)點(diǎn)
(3)講解例題。在講例題時(shí),不僅在于怎樣解,更在于為什么這樣解,而及時(shí)對(duì)解題方法和規(guī)律進(jìn)行概括,有利于學(xué)生的思維能力。
(4)能力訓(xùn)練。課后練習(xí)使學(xué)生能鞏固羨慕自覺(jué)運(yùn)用所學(xué)知識(shí)與解題思想方法。
(5)總結(jié)結(jié)論,強(qiáng)化認(rèn)識(shí)。知識(shí)性的內(nèi)容小結(jié),可把課堂教學(xué)傳授的知識(shí)盡快化為學(xué)生的素質(zhì),數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐步培養(yǎng)學(xué)生良好的個(gè)性品質(zhì)目標(biāo)。
(6)變式延伸,進(jìn)行重構(gòu),重視課本例題,適當(dāng)對(duì)題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對(duì)知識(shí)的`串聯(lián),累積,加工,從而達(dá)到舉一反三的效果。
(7)板書(shū)
(8)布置作業(yè)。
針對(duì)學(xué)生素質(zhì)的差異進(jìn)行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有余力的學(xué)生有所提高。
教學(xué)程序:
(一)課堂結(jié)構(gòu):復(fù)習(xí)提問(wèn),導(dǎo)入講授課,課堂練習(xí),鞏固新課,布置作業(yè)等五部分
高中數(shù)學(xué)集合教學(xué)反思
集合這章內(nèi)容,教學(xué)參考書(shū)上安排的課時(shí)為五課時(shí),我們的導(dǎo)學(xué)案也是安排五課時(shí),實(shí)際教學(xué)時(shí),由于對(duì)學(xué)生的實(shí)際情況估計(jì)不足,第一課時(shí)的導(dǎo)學(xué)案用了兩課時(shí)才完成。集合這一章的特點(diǎn)是概念不多,但這章所涉及到的內(nèi)容很廣,學(xué)生學(xué)習(xí)本章內(nèi)容時(shí),不僅要理解本章的概念,還要理解與本章內(nèi)容相關(guān)聯(lián)的其他內(nèi)容,這些內(nèi)容有初中學(xué)習(xí)過(guò)的內(nèi)容、有生活中的方方面面的相關(guān)知識(shí),再加上高中學(xué)習(xí)方法與初中不同,邏輯思維能力要求較高,因此學(xué)生感覺(jué)學(xué)起來(lái)比較困難。針對(duì)這種情況,我在實(shí)際教學(xué)時(shí),首先要求學(xué)生準(zhǔn)確理解概念,如:集合的元素具有三個(gè)性質(zhì):確定性、互異性、無(wú)序性。集合的關(guān)系、運(yùn)算等都是從元素的角度定義的,所以解集合問(wèn)題時(shí),教會(huì)學(xué)生對(duì)元素的性質(zhì)進(jìn)行分析,反復(fù)訓(xùn)練,讓學(xué)生通過(guò)實(shí)例體會(huì)這三個(gè)性質(zhì)。
第二,掌握相關(guān)的符號(hào)語(yǔ)言、venn圖,正確使用列舉法、描述法表示集合,特別要注意用描述法表示集合時(shí),集合中的元素是什么,這是一個(gè)教學(xué)難點(diǎn)。第二個(gè)難點(diǎn)是集合的運(yùn)算—交集和并集。突破難點(diǎn)充分運(yùn)用數(shù)形結(jié)合思想,集合間的關(guān)系和運(yùn)算,以數(shù)形結(jié)合思想為指導(dǎo),借助圖形思考,可以使各集合間的關(guān)系直觀明了,使抽象的集合運(yùn)算建立在直觀的基礎(chǔ)上,使解題思路清晰明朗,直觀簡(jiǎn)捷,有利于問(wèn)題的解決。
第三,指導(dǎo)學(xué)生理解并掌握自然語(yǔ)言、符號(hào)語(yǔ)言、圖形語(yǔ)言這三種語(yǔ)言,靈活準(zhǔn)確地進(jìn)行語(yǔ)言轉(zhuǎn)換,可以幫助學(xué)生提高分析問(wèn)題,解決問(wèn)題的能力。
第四,集合問(wèn)題涉及到的其他內(nèi)容,遇到了講透,不拓展。
集合的概念教案7
目標(biāo):
。1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及其記法
。2)使學(xué)生初步了解“屬于”關(guān)系的意義
(3)使學(xué)生初步了解有限集、無(wú)限集、空集的意義
重點(diǎn):
集合的基本概念
教學(xué)過(guò)程:
1、引入
(1)章頭導(dǎo)言
。2)集合論與集合論的創(chuàng)始者—————康托爾(有關(guān)介紹可引用附錄中的內(nèi)容)
2、講授新課
閱讀教材,并思考下列問(wèn)題:
。1)有那些概念?
(2)有那些符號(hào)?
(3)集合中元素的特性是什么?
(4)如何給集合分類?
。ㄒ唬┯嘘P(guān)概念:
1、集合的概念
。1)對(duì)象:我們可以感覺(jué)到的客觀存在以及我們思想中的事物或抽象符號(hào),都可以稱作對(duì)象。
。2)集合:把一些能夠確定的不同的對(duì)象看成一個(gè)整體,就說(shuō)這個(gè)整體是由這些對(duì)象的全體構(gòu)成的集合。
。3)元素:集合中每個(gè)對(duì)象叫做這個(gè)集合的元素。
集合通常用大寫(xiě)的拉丁字母表示,如A、B、C、……元素通常用小寫(xiě)的拉丁字母表示,如a、b、c、……
2、元素與集合的關(guān)系
(1)屬于:如果a是集合A的元素,就說(shuō)a屬于A,記作a∈A
(2)不屬于:如果a不是集合A的元素,就說(shuō)a不屬于A,記作
要注意“∈”的方向,不能把a(bǔ)∈A顛倒過(guò)來(lái)寫(xiě)。
3、集合中元素的特性
。1)確定性:給定一個(gè)集合,任何對(duì)象是不是這個(gè)集合的元素是確定的了。
。2)互異性:集合中的元素一定是不同的
。3)無(wú)序性:集合中的元素沒(méi)有固定的順序。
4、集合分類
根據(jù)集合所含元素個(gè)屬不同,可把集合分為如下幾類:
。1)把不含任何元素的集合叫做空集Ф
。2)含有有限個(gè)元素的.集合叫做有限集
。3)含有無(wú)窮個(gè)元素的集合叫做無(wú)限集
注:應(yīng)區(qū)分符號(hào)的含義
5、常用數(shù)集及其表示方法
。1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合。記作N
(2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集。記作N*或N+
。3)整數(shù)集:全體整數(shù)的集合。記作Z
。4)有理數(shù)集:全體有理數(shù)的集合。記作Q
。5)實(shí)數(shù)集:全體實(shí)數(shù)的集合。記作R
注:
。1)自然數(shù)集包括數(shù)0。
(2)非負(fù)整數(shù)集內(nèi)排除0的集。記作N*或N+,Q、Z、R等其它數(shù)集內(nèi)排除0的集,也這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z*
課堂練習(xí):
教材第5頁(yè)練習(xí)A、B
小結(jié):
本節(jié)課我們了解集合論的發(fā)展,學(xué)習(xí)了集合的概念及有關(guān)性質(zhì)
課后作業(yè):
第十頁(yè)習(xí)題1—1B第3題
集合的概念教案8
讓學(xué)生觀察下列實(shí)例
(1)1~20以內(nèi)的所有質(zhì)數(shù);
(2)所有的正方形;
。3)到直線 的距離等于定長(zhǎng) 的所有的點(diǎn);
。4)方程 的所有實(shí)數(shù)根;
通過(guò)以上實(shí)例,辨析概念:
(1)集合含義:一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡(jiǎn)稱集。而集合中的每個(gè)對(duì)象叫做這個(gè)集合的元素。
。2)表示方法:集合通常用大括號(hào){ }或大寫(xiě)的拉丁字母a,b,c…表示,而元素用小寫(xiě)的拉丁字母a,b,c…表示。
小組合作探究(2)——集合元素的特征
問(wèn)題3:任意一組對(duì)象是否都能組成一個(gè)集合?集合中的元素有什么特征?
問(wèn)題4:某單位所有的"帥哥"能否構(gòu)成一個(gè)集合?由此說(shuō)明什么?
集合中的元素必須是確定的
問(wèn)題5:在一個(gè)給定的.集合中能否有相同的元素?由此說(shuō)明什么?
集合中的元素是不重復(fù)出現(xiàn)的
問(wèn)題6:咱班的全體同學(xué)組成一個(gè)集合,調(diào)整座位后這個(gè)集合有沒(méi)有變化?由此說(shuō)明什么? 集合中的元素是沒(méi)有順序的
我如此設(shè)計(jì)的意圖是因?yàn)椋簡(jiǎn)栴}是數(shù)學(xué)的心臟,感受問(wèn)題是學(xué)習(xí)數(shù)學(xué)的根本動(dòng)力。
小組合作探究(3)——元素與集合的關(guān)系
問(wèn)題7:設(shè)集合a表示"1~20以內(nèi)的所有質(zhì)數(shù)",那么3,4,5,6這四個(gè)元素哪些在集合a中?哪些不在集合a中?
問(wèn)題8:如果元素a是集合a中的元素,我們?nèi)绾斡脭?shù)學(xué)化的語(yǔ)言表達(dá)?
a屬于集合a,記作a∈a
問(wèn)題9:如果元素a不是集合a中的元素,我們?nèi)绾斡脭?shù)學(xué)化的語(yǔ)言表達(dá)?
a不屬于集合a,記作aa
小組合作探究(4)——常用數(shù)集及其表示方法
問(wèn)題10:自然數(shù)集,正整數(shù)集,整數(shù)集,有理數(shù)集,實(shí)數(shù)集等一些常用數(shù)集,分別用什么符號(hào)表示?
自然數(shù)集(非負(fù)整數(shù)集):記作 n
正整數(shù)集:
整數(shù)集:記作 z
有理數(shù)集:記作 q 實(shí)數(shù)集:記作 r
設(shè)計(jì)意圖:由于不同的人對(duì)同一問(wèn)題有不同的體驗(yàn)和理解。讓學(xué)生通過(guò)合作交流相互得到啟發(fā),從而不斷完善自己的知識(shí)結(jié)構(gòu)。
第四環(huán)節(jié):理論遷移 變式訓(xùn)練
1.下列指定的對(duì)象,能構(gòu)成一個(gè)集合的是
、 很小的數(shù)
② 不超過(guò)30的非負(fù)實(shí)數(shù)
、 直角坐標(biāo)平面內(nèi)橫坐標(biāo)與縱坐標(biāo)相等的點(diǎn)
④ π的近似值
、 所有無(wú)理數(shù)
a、②③④⑤ b、①②③⑤ c、②③⑤ d、②③④
第五環(huán)節(jié):課堂小結(jié),自我評(píng)價(jià)
1.這節(jié)課學(xué)習(xí)的主要內(nèi)容是什么?
2.這節(jié)課主要解釋了什么數(shù)學(xué)思想?
設(shè)計(jì)意圖:引導(dǎo)學(xué)生對(duì)所學(xué)知識(shí)、思想方法進(jìn)行小結(jié),形成知識(shí)系統(tǒng)。教師用激勵(lì)性的語(yǔ)言加一點(diǎn)評(píng),讓學(xué)生的思想敞亮的發(fā)揮出來(lái)。
第六環(huán)節(jié):作業(yè)布置,反饋矯正
1.必做題 課本習(xí)題1.1—1、2、3。
2.選做題 已知集合a={a+2,(a+1)2,a2+3a+3},且1∈a,求實(shí)數(shù)a 的值。
設(shè)計(jì)意圖:充分考慮到學(xué)生的差異性,讓所有學(xué)生都有成功的情感體驗(yàn)。
四、板書(shū)設(shè)計(jì)
好的板書(shū)就像一份微型教案,為了讓學(xué)生直觀易懂的看筆記,板書(shū)應(yīng)設(shè)計(jì)得有條理性、概括性、指導(dǎo)性,所以我設(shè)計(jì)的板書(shū)如下:
集合
1.集合的概念
2.集合元素的特征
(學(xué)生板演)
3.常見(jiàn)集合的表示
4.范例研
【的概念教案】相關(guān)文章:
函數(shù)概念說(shuō)課稿07-18
安全概念口號(hào)06-15
函數(shù)的概念教學(xué)反思06-08