- 相關(guān)推薦
對(duì)數(shù)函數(shù)教案
在教學(xué)工作者實(shí)際的教學(xué)活動(dòng)中,常常要寫(xiě)一份優(yōu)秀的教案,借助教案可以恰當(dāng)?shù)剡x擇和運(yùn)用教學(xué)方法,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性?靵(lái)參考教案是怎么寫(xiě)的吧!下面是小編精心整理的對(duì)數(shù)函數(shù)教案,供大家參考借鑒,希望可以幫助到有需要的朋友。
對(duì)數(shù)函數(shù)教案1
本文題目:高一數(shù)學(xué)教案:對(duì)數(shù)函數(shù)及其性質(zhì)
2.2.2 對(duì)數(shù)函數(shù)及其性質(zhì)(二)
內(nèi)容與解析
(一) 內(nèi)容:對(duì)數(shù)函數(shù)及其性質(zhì)(二)。
(二) 解析:從近幾年高考試題看,主要考查對(duì)數(shù)函數(shù)的性質(zhì),一般綜合在對(duì)數(shù)函數(shù)中考查.題型主要是選擇題和填空題,命題靈活.學(xué)習(xí)本部分時(shí),要重點(diǎn)掌握對(duì)數(shù)的運(yùn)算性質(zhì)和技巧,并熟練應(yīng)用.
一、 目標(biāo)及其解析:
(一) 教學(xué)目標(biāo)
(1) 了解對(duì)數(shù)函數(shù)在生產(chǎn)實(shí)際中的簡(jiǎn)單應(yīng)用.進(jìn)一步理解對(duì)數(shù)函數(shù)的圖象和性質(zhì);
(2) 學(xué)習(xí)反函數(shù)的概念,理解對(duì)數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),能夠在同一坐標(biāo)上看出互為反函數(shù)的兩個(gè)函數(shù)的圖象性質(zhì)..
(二) 解析
(1)在對(duì)數(shù)函數(shù) 中,底數(shù) 且 ,自變量 ,函數(shù)值 .作為對(duì)數(shù)函數(shù)的三個(gè)要點(diǎn),要做到道理明白、記憶牢固、運(yùn)用準(zhǔn)確.
(2)反函數(shù)求法:①確定原函數(shù)的值域即新函數(shù)的定義域.②把原函數(shù)y=f(x)視為方程,用y表示出x.③把x、y互換,同時(shí)標(biāo)明反函數(shù)的定義域.
二、 問(wèn)題診斷分析
在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問(wèn)題是不易理解反函數(shù),熟練掌握其轉(zhuǎn)化關(guān)系是學(xué)好對(duì)數(shù)函數(shù)與反函數(shù)的基礎(chǔ)。
三、 教學(xué)支持條件分析
在本節(jié)課一次遞推的教學(xué)中,準(zhǔn)備使用PowerPoint 2003。因?yàn)槭褂肞owerPoint 2003,有利于提供準(zhǔn)確、最核心的文字信息,有利于幫助學(xué)生順利抓住老師上課思路,節(jié)省老師板書(shū)時(shí)間,讓學(xué)生盡快地進(jìn)入對(duì)問(wèn)題的分析當(dāng)中。
四、 教學(xué)過(guò)程
問(wèn)題一. 對(duì)數(shù)函數(shù)模型思想及應(yīng)用:
、 出示例題:溶液酸堿度的測(cè)量問(wèn)題:溶液酸堿度pH的計(jì)算公式 ,其中 表示溶液中氫離子的濃度,單位是摩爾/升.
(Ⅰ)分析溶液酸堿讀與溶液中氫離子濃度之間的關(guān)系?
(Ⅱ)純凈水 摩爾/升,計(jì)算純凈水的酸堿度.
、谟懻摚撼橄蟪龅暮瘮(shù)模型? 如何應(yīng)用函數(shù)模型解決問(wèn)題? 強(qiáng)調(diào)數(shù)學(xué)應(yīng)用思想
問(wèn)題二.反函數(shù):
① 引言:當(dāng)一個(gè)函數(shù)是一一映射時(shí), 可以把這個(gè)函數(shù)的'因變量作為一個(gè)新函數(shù)的自變量, 而把這個(gè)函數(shù)的自變量新的函數(shù)的因變量. 我們稱(chēng)這兩個(gè)函數(shù)為反函數(shù)(inverse function)
、 探究:如何由 求出x?
、 分析:函數(shù) 由 解出,是把指數(shù)函數(shù) 中的自變量與因變量對(duì)調(diào)位置而得出的. 習(xí)慣上我們通常用x表示自變量,y表示函數(shù),即寫(xiě)為 .
那么我們就說(shuō)指數(shù)函數(shù) 與對(duì)數(shù)函數(shù) 互為反函數(shù)
、 在同一平面直角坐標(biāo)系中,畫(huà)出指數(shù)函數(shù) 及其反函數(shù) 圖象,發(fā)現(xiàn)什么性質(zhì)?
、 分析:取 圖象上的幾個(gè)點(diǎn),說(shuō)出它們關(guān)于直線(xiàn) 的對(duì)稱(chēng)點(diǎn)的坐標(biāo),并判斷它們是否在 的圖象上,為什么?
、 探究:如果 在函數(shù) 的圖象上,那么P0關(guān)于直線(xiàn) 的對(duì)稱(chēng)點(diǎn)在函數(shù) 的圖象上嗎,為什么?
由上述過(guò)程可以得到什么結(jié)論?(互為反函數(shù)的兩個(gè)函數(shù)的圖象關(guān)于直線(xiàn) 對(duì)稱(chēng))
⑦練習(xí):求下列函數(shù)的反函數(shù): ;
(師生共練 小結(jié)步驟:解x ;習(xí)慣表示;定義域)
(二)小結(jié):函數(shù)模型應(yīng)用思想;反函數(shù)概念;閱讀P84材料
五、 目標(biāo)檢測(cè)
1.(2009全國(guó)卷Ⅱ文)函數(shù)y= (x 0)的反函數(shù)是
A. (x 0) B. (x 0) C. (x 0) D. (x 0)
1.B 解析:本題考查反函數(shù)概念及求法,由原函數(shù)x 0可知A、C錯(cuò),原函數(shù)y 0可知D錯(cuò),選B.
2. (2009廣東卷理)若函數(shù) 是函數(shù) 的反函數(shù),其圖像經(jīng)過(guò)點(diǎn) ,則 ( )
A. B. C. D.
2. B 解析: ,代入 ,解得 ,所以 ,選B.
3. 求函數(shù) 的反函數(shù)
3.解析:顯然y0,反解 可得, ,將x,y互換可得 .可得原函數(shù)的反函數(shù)為 .
【總結(jié)】2013年已經(jīng)到來(lái),新的一年數(shù)學(xué)網(wǎng)會(huì)為您整理更多更好的文章,希望本文高一數(shù)學(xué)教案:對(duì)數(shù)函數(shù)及其性質(zhì)能給您帶來(lái)幫助!
對(duì)數(shù)函數(shù)教案2
教學(xué)目標(biāo)
1.使學(xué)生理解函數(shù)單調(diào)性的概念,并能判斷一些簡(jiǎn)單函數(shù)在給定區(qū)間上的單調(diào)性.
2.通過(guò)函數(shù)單調(diào)性概念的教學(xué),培養(yǎng)學(xué)生分析問(wèn)題、認(rèn)識(shí)問(wèn)題的能力.通過(guò)例題培養(yǎng)學(xué)生利用定義進(jìn)行推理的邏輯思維能力.
3.通過(guò)本節(jié)課的教學(xué),滲透數(shù)形結(jié)合的數(shù)學(xué)思想,對(duì)學(xué)生進(jìn)行辯證唯物主義的教育.
教學(xué)重點(diǎn)與難點(diǎn)
教學(xué)重點(diǎn):函數(shù)單調(diào)性的概念.
教學(xué)難點(diǎn):函數(shù)單調(diào)性的判定.
教學(xué)過(guò)程設(shè)計(jì)
一、引入新課
師:請(qǐng)同學(xué)們觀(guān)察下面兩組在相應(yīng)區(qū)間上的函數(shù),然后指出這兩組函數(shù)之間在性質(zhì)上的主要區(qū)別是什么?
。ㄓ猛队盎脽艚o出兩組函數(shù)的圖象.)
第一組:
第二組:
生:第一組函數(shù),函數(shù)值y隨x的增大而增大;第二組函數(shù),函數(shù)值y隨x的增大而減。
師:(手執(zhí)投影棒使之沿曲線(xiàn)移動(dòng))對(duì).他(她)答得很好,這正是兩組函數(shù)的主要區(qū)別.當(dāng)x變大時(shí),第一組函數(shù)的函數(shù)值都變大,而第二組函數(shù)的函數(shù)值都變。m然在每一組函數(shù)中,函數(shù)值變大或變小的方式并不相同,但每一組函數(shù)卻具有一種共同的性質(zhì).我們?cè)趯W(xué)習(xí)一次函數(shù)、二次函數(shù)、反比例函數(shù)以及冪函數(shù)時(shí),就曾經(jīng)根據(jù)函數(shù)的圖象研究過(guò)函數(shù)的函數(shù)值隨自變量的變大而變大或變小的性質(zhì).而這些研究結(jié)論是直觀(guān)地由圖象得到的.在函數(shù)的集合中,有很多函數(shù)具有這種性質(zhì),因此我們有必要對(duì)函數(shù)這種性質(zhì)作更進(jìn)一步的一般性的討論和研究,這就是我們今天這一節(jié)課的內(nèi)容.
。c(diǎn)明本節(jié)課的內(nèi)容,既是曾經(jīng)有所認(rèn)識(shí)的,又是新的知識(shí),引起學(xué)生的注意.)
二、對(duì)概念的分析
(板書(shū)課題:)
師:請(qǐng)同學(xué)們打開(kāi)課本第51頁(yè),請(qǐng)××同學(xué)把增函數(shù)、減函數(shù)、單調(diào)區(qū)間的定義朗讀一遍.
。▽W(xué)生朗讀.)
師:好,請(qǐng)坐.通過(guò)剛才閱讀增函數(shù)和減函數(shù)的定義,請(qǐng)同學(xué)們思考一個(gè)問(wèn)題:這種定義方法和我們剛才所討論的函數(shù)值y隨自變量x的增大而增大或減小是否一致?如果一致,定義中是怎樣描述的?
生:我認(rèn)為是一致的.定義中的“當(dāng)x1<x2時(shí),都有f(x1)<f(x2)”描述了y隨x的增大而增大;“當(dāng)x1<x2時(shí),都有f(x1)>f(x2)”描述了y隨x的增大而減少.
師:說(shuō)得非常正確.定義中用了兩個(gè)簡(jiǎn)單的不等關(guān)系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻劃了函數(shù)的單調(diào)遞增或單調(diào)遞減的性質(zhì).這就是數(shù)學(xué)的魅力!
。ㄍㄟ^(guò)教師的情緒感染學(xué)生,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.)
師:現(xiàn)在請(qǐng)同學(xué)們和我一起來(lái)看剛才的兩組圖中的第一個(gè)函數(shù)y=f1(x)和y=f2(x)的圖象,體會(huì)這種魅力.
(指圖說(shuō)明.)
師:圖中y=f1(x)對(duì)于區(qū)間[a,b]上的任意x1,x2,當(dāng)x1<x2時(shí),都有f1(x1)<f1(x),因此y=f1(x)在區(qū)間[a,b]上是單調(diào)遞增的,區(qū)間[a,b]是函數(shù)y=f1(x)的單調(diào)增區(qū)間;而圖中y=f2(x)對(duì)于區(qū)間[a,b]上的任意x1,x2,當(dāng)x1<x2時(shí),都有f2(x1)>f2(x2),因此y=f2(x)在區(qū)間[a,b]上是單調(diào)遞減的,區(qū)間[a,b]是函數(shù)y=f2(x)的單調(diào)減區(qū)間.
(教師指圖說(shuō)明分析定義,使學(xué)生把函數(shù)單調(diào)性的定義與直觀(guān)圖象結(jié)合起來(lái),使新舊知識(shí)融為一體,加深對(duì)概念的理解.滲透數(shù)形結(jié)合分析問(wèn)題的數(shù)學(xué)思想方法.)
師:因此我們可以說(shuō),增函數(shù)就其本質(zhì)而言是在相應(yīng)區(qū)間上較大的自變量對(duì)應(yīng)……
。ú话言(huà)說(shuō)完,指一名學(xué)生接著說(shuō)完,讓學(xué)生的思維始終跟著老師.)
生:較大的函數(shù)值的函數(shù).
師:那么減函數(shù)呢?
生:減函數(shù)就其本質(zhì)而言是在相應(yīng)區(qū)間上較大的自變量對(duì)應(yīng)較小的函數(shù)值的函數(shù).
。▽W(xué)生可能回答得不完整,教師應(yīng)指導(dǎo)他說(shuō)完整.)
師:好.我們剛剛以增函數(shù)和減函數(shù)的定義作了初步的分析,通過(guò)閱讀和分析你認(rèn)為在定義中我們應(yīng)該抓住哪些關(guān)鍵詞語(yǔ),才能更透徹地認(rèn)識(shí)定義?
。▽W(xué)生思索.)
學(xué)生在高中階段以至在以后的學(xué)習(xí)中經(jīng)常會(huì)遇到一些概念(或定義),能否抓住定義中的關(guān)鍵詞語(yǔ),是能否正確地、深入地理解和掌握概念的重要條件,更是學(xué)好數(shù)學(xué)及其他各學(xué)科的重要一環(huán).因此教師應(yīng)該教會(huì)學(xué)生如何深入理解一個(gè)概念,以培養(yǎng)學(xué)生分析問(wèn)題,認(rèn)識(shí)問(wèn)題的能力.
。ń處熢趯W(xué)生思索過(guò)程中,再一次有感情地朗讀定義,并注意在關(guān)鍵詞語(yǔ)處適當(dāng)加重語(yǔ)氣.在學(xué)生感到無(wú)從下手時(shí),給以適當(dāng)?shù)奶崾荆?/p>
生:我認(rèn)為在定義中,有一個(gè)詞“給定區(qū)間”是定義中的關(guān)鍵詞語(yǔ).
師:很好,我們?cè)趯W(xué)習(xí)任何一個(gè)概念的時(shí)候,都要善于抓住定義中的關(guān)鍵詞語(yǔ),在學(xué)習(xí)幾個(gè)相近的概念時(shí)還要注意區(qū)別它們之間的不同.增函數(shù)和減函數(shù)都是對(duì)相應(yīng)的區(qū)間而言的,離開(kāi)了相應(yīng)的區(qū)間就根本談不上函數(shù)的增減性.請(qǐng)大家思考一個(gè)問(wèn)題,我們能否說(shuō)一個(gè)函數(shù)在x=5時(shí)是遞增或遞減的?為什么?
生:不能.因?yàn)榇藭r(shí)函數(shù)值是一個(gè)數(shù).
師:對(duì).函數(shù)在某一點(diǎn),由于它的函數(shù)值是唯一確定的常數(shù)(注意這四個(gè)字“唯一確定”),因而沒(méi)有增減的變化.那么,我們能不能脫離區(qū)間泛泛談?wù)撃骋粋(gè)函數(shù)是增函數(shù)或是減函數(shù)呢?你能否舉一個(gè)我們學(xué)過(guò)的例子?
生:不能.比如二次函數(shù)y=x2,在y軸左側(cè)它是減函數(shù),在y軸右側(cè)它是增函數(shù).因而我們不能說(shuō)y=x2是增函數(shù)或是減函數(shù).
(在學(xué)生回答問(wèn)題時(shí),教師板演函數(shù)y=x2的圖像,從“形”上感知.)
師:好.他(她)舉了一個(gè)例子來(lái)幫助我們理解定義中的詞語(yǔ)“給定區(qū)間”.這說(shuō)明是函數(shù)在某一個(gè)區(qū)間上的性質(zhì),但這不排斥有些函數(shù)在其定義域內(nèi)都是增函數(shù)或減函數(shù).因此,今后我們?cè)谡務(wù)摵瘮?shù)的增減性時(shí)必須指明相應(yīng)的區(qū)間.
師:還有沒(méi)有其他的關(guān)鍵詞語(yǔ)?
生:還有定義中的“屬于這個(gè)區(qū)間的任意兩個(gè)”和“都有”也是關(guān)鍵詞語(yǔ).
師:你答的很對(duì).能解釋一下為什么嗎?
(學(xué)生不一定能答全,教師應(yīng)給予必要的提示.)
師:“屬于”是什么意思?
生:就是說(shuō)兩個(gè)自變量x1,x2必須取自給定的區(qū)間,不能從其他區(qū)間上。
師:如果是閉區(qū)間的話(huà),能否取自區(qū)間端點(diǎn)?
生:可以.
師:那么“任意”和“都有”又如何理解?
生:“任意”就是指不能取特定的值來(lái)判斷函數(shù)的增減性,而“都有”則是說(shuō)只要x1<x2,f(x1)就必須都小于f(x2),或f(x1)都大于f(x2).
師:能不能構(gòu)造一個(gè)反例來(lái)說(shuō)明“任意”呢?
。ㄗ寣W(xué)生思考片刻.)
生:可以構(gòu)造一個(gè)反例.考察函數(shù)y=x2,在區(qū)間[-2,2]上,如果取兩個(gè)特定的值x1=-2,x2=1,顯然x1<x2,而f(x1)=4,f(x2)=1,有f(x1)>f(x2),若由此判定y=x2是[-2,2]上的減函數(shù),那就錯(cuò)了.
師:那么如何來(lái)說(shuō)明“都有”呢?
生:y=x2在[-2,2]上,當(dāng)x1=-2,x2=-1時(shí),有f(x1)>f(x2);當(dāng)x1=1,x2=2時(shí),有f(x1)<f(x2),這時(shí)就不能說(shuō)y=x2,在[-2,2]上是增函數(shù)或減函數(shù).
師:好極了!通過(guò)分析定義和舉反例,我們知道要判斷函數(shù)y=f(x)在某個(gè)區(qū)間內(nèi)是增函數(shù)或減函數(shù),不能由特定的兩個(gè)點(diǎn)的情況來(lái)判斷,而必須嚴(yán)格依照定義在給定區(qū)間內(nèi)任取兩個(gè)自變量x1,x2,根據(jù)它們的函數(shù)值f(x1)和f(x2)的大小來(lái)判定函數(shù)的增減性.
。ń處熗ㄟ^(guò)一系列的設(shè)問(wèn),使學(xué)生處于積極的思維狀態(tài),從抽象到具體,并通過(guò)反例的反襯,使學(xué)生加深對(duì)定義的理解.在概念教學(xué)中,反例常常幫助學(xué)生更深刻地理解概念,鍛煉學(xué)生的發(fā)散思維能力.)
師:反過(guò)來(lái),如果我們已知f(x)在某個(gè)區(qū)間上是增函數(shù)或是減函數(shù),那么,我們就可以通過(guò)自變量的大小去判定函數(shù)值的大小,也可以由函數(shù)值的大小去判定自變量的大。匆话愠闪t特殊成立,反之,特殊成立,一般不一定成立.這恰是辯證法中一般和特殊的關(guān)系.
。ㄓ棉q證法的原理來(lái)解釋數(shù)學(xué)知識(shí),同時(shí)用數(shù)學(xué)知識(shí)去理解辯證法的原理,這樣的分析,有助于深入地理解和掌握概念,分清概念的內(nèi)涵和外延,培養(yǎng)學(xué)生學(xué)習(xí)的能力.)
三、概念的應(yīng)用
例1 圖4所示的是定義在閉區(qū)間[-5,5]上的函數(shù)f(x)的圖象,根據(jù)圖象說(shuō)出f(x)的單調(diào)區(qū)間,并回答:在每一個(gè)單調(diào)區(qū)間上,f(x)是增函數(shù)還是減函數(shù)?
。ㄓ猛队盎脽艚o出圖象.)
生甲:函數(shù)y=f(x)在區(qū)間[-5,-2],[1,3]上是減函數(shù),因此[-5,-2],[1,3]是函數(shù)y=f(x)的單調(diào)減區(qū)間;在區(qū)間[-2,1],[3,5]上是增函數(shù),因此[-2,1],[3,5]是函數(shù)y=f(x)的單調(diào)增區(qū)間.
生乙:我有一個(gè)問(wèn)題,[-5,-2]是函數(shù)f(x)的單調(diào)減區(qū)間,那么,是否可認(rèn)為(-5,-2)也是f(x)的單調(diào)減區(qū)間呢?
師:?jiǎn)柕煤茫@說(shuō)明你想的很仔細(xì),思考問(wèn)題很?chē)?yán)謹(jǐn).容易證明:若f(x)在[a,b]上單調(diào)(增或減),則f(x)在(a,b)上單調(diào)(增或減).反之不然,你能舉出反例嗎?一般來(lái)說(shuō).若f(x)在[a,(增或減).反之不然.
例2 證明函數(shù)f(x)=3x+2在(-∞,+∞)上是增函數(shù).
師:從函數(shù)圖象上觀(guān)察固然形象,但在理論上不夠嚴(yán)格,尤其是有些函數(shù)不易畫(huà)出圖象,因此必須學(xué)會(huì)根據(jù)解析式和定義從數(shù)量上分析辨認(rèn),這才是我們研究函數(shù)單調(diào)性的基本途徑.
。ㄖ赋鲇枚x證明的必要性.)
師:怎樣用定義證明呢?請(qǐng)同學(xué)們思考后在筆記本上寫(xiě)出證明過(guò)程.
。ń處熝惨,并指定一名中等水平的學(xué)生在黑板上板演.學(xué)生可能會(huì)對(duì)如何比較f(x1)和f(x2)的大小關(guān)系感到無(wú)從入手,教師應(yīng)給以啟發(fā).)
師:對(duì)于f(x1)和f(x2)我們?nèi)绾伪容^它們的大小呢?我們知道對(duì)兩個(gè)實(shí)數(shù)a,b,如果a>b,那么它們的差a-b就大于零;如果a=b,那么它們的差a—b就等于零;如果a<b,那么它們的差a-b就小于零,反之也成立.因此我們可由差的符號(hào)來(lái)決定兩個(gè)數(shù)的大小關(guān)系.
生:(板演)設(shè)x1,x2是(-∞,+∞)上任意兩個(gè)自變量,當(dāng)x1<x2時(shí),
f(x1)-f(x2)=(3x1+2)-(3x2+2)=3x1-3x2=3(x1-x2)<0,
所以f(x)是增函數(shù).
師:他的證明思路是清楚的.一開(kāi)始設(shè)x1,x2是(-∞,+∞)內(nèi)任意兩個(gè)自變量,并設(shè)x1<x2(邊說(shuō)邊用彩色粉筆在相應(yīng)的語(yǔ)句下劃線(xiàn),并標(biāo)注“①→設(shè)”),然后看f(x1)-f(x2),這一步是證明的關(guān)鍵,再對(duì)式子進(jìn)行變形,一般方法是分解因式或配成完全平方的形式,這一步可概括為“作差,變形”(同上,劃線(xiàn)并標(biāo)注”②→作差,變形”).但美中不足的是他沒(méi)能說(shuō)明為什么f(x1)-f(x2)<0,沒(méi)有用到開(kāi)始的假設(shè)“x1<x2”,不要以為其顯而易見(jiàn),在這里一定要對(duì)變形后的式子說(shuō)明其符號(hào).應(yīng)寫(xiě)明“因?yàn)閤1<x2,所以x1-x2<0,從而f(x1)-f(x2)<0,即f(x1)<f(x2).”這一步可概括為“定符號(hào)”(在黑板上板演,并注明“③→定符號(hào)”).最后,作為證明題一定要有結(jié)論,我們把它稱(chēng)之為第四步“下結(jié)論”(在相應(yīng)位置標(biāo)注“④→下結(jié)論”).
這就是我們用定義證明函數(shù)增減性的四個(gè)步驟,請(qǐng)同學(xué)們記住.需要指出的是第二步,如果函數(shù)y=f(x)在給定區(qū)間上恒大于零,也可以。
(對(duì)學(xué)生的`做法進(jìn)行分析,把證明過(guò)程步驟化,可以形成思維的定勢(shì).在學(xué)生剛剛接觸一個(gè)新的知識(shí)時(shí),思維定勢(shì)對(duì)理解知識(shí)本身是有益的,同時(shí)對(duì)學(xué)生養(yǎng)成一定的思維習(xí)慣,形成一定的解題思路也是有幫助的.)
調(diào)函數(shù)嗎?并用定義證明你的結(jié)論.
師:你的結(jié)論是什么呢?
上都是減函數(shù),因此我覺(jué)得它在定義域(-∞,0)∪(0,+∞)上是減函數(shù).
生乙:我有不同的意見(jiàn),我認(rèn)為這個(gè)函數(shù)不是整個(gè)定義域內(nèi)的減函數(shù),因?yàn)樗环蠝p函數(shù)的定義.比如取x1∈(-∞,0),取x2∈(0,+∞),x1<x2顯然成立,而f(x1)<0,f(x2)>0,顯然有f(x1)<f(x2),而不是f(x1)>f(x2),因此它不是定義域內(nèi)的減函數(shù).
生:也不能這樣認(rèn)為,因?yàn)橛蓤D象可知,它分別在(-∞,0)和(0,+∞)上都是減函數(shù).
域內(nèi)的增函數(shù),也不是定義域內(nèi)的減函數(shù),它在(-∞,0)和(0,+∞)每一個(gè)單調(diào)區(qū)間內(nèi)都是減函數(shù).因此在函數(shù)的幾個(gè)單調(diào)增(減)區(qū)間之間不要用符號(hào)“∪”連接.另外,x=0不是定義域中的元素,此時(shí)不要寫(xiě)成閉區(qū)間.
上是減函數(shù).
。ń處熝惨暎畬(duì)學(xué)生證明中出現(xiàn)的問(wèn)題給予點(diǎn)拔.可依據(jù)學(xué)生的問(wèn)題,給出下面的提示:
。1)分式問(wèn)題化簡(jiǎn)方法一般是通分.
(2)要說(shuō)明三個(gè)代數(shù)式的符號(hào):k,x1·x2,x2-x1.
要注意在不等式兩邊同乘以一個(gè)負(fù)數(shù)的時(shí)候,不等號(hào)方向要改變.
對(duì)學(xué)生的解答進(jìn)行簡(jiǎn)單的分析小結(jié),點(diǎn)出學(xué)生在證明過(guò)程中所出現(xiàn)的問(wèn)題,引起全體學(xué)生的重視.)
四、課堂小結(jié)
師:請(qǐng)同學(xué)小結(jié)一下這節(jié)課的主要內(nèi)容,有哪些是應(yīng)該特別注意的?
(請(qǐng)一個(gè)思路清晰,善于表達(dá)的學(xué)生口述,教師可從中給予提示.)
生:這節(jié)課我們學(xué)習(xí)了函數(shù)單調(diào)性的定義,要特別注意定義中“給定區(qū)間”、“屬于”、“任意”、“都有”這幾個(gè)關(guān)鍵詞語(yǔ);在寫(xiě)單調(diào)區(qū)間時(shí)不要輕易用并集的符號(hào)連接;最后在用定義證明時(shí),應(yīng)該注意證明的四個(gè)步驟.
五、作業(yè)
1.課本P53練習(xí)第1,2,3,4題.
數(shù).
=a(x1-x2)(x1+x2)+b(x1-x2)
=(x1-x2)[a(x1+x2)+b].(*)
+b>0.由此可知(*)式小于0,即f(x1)<f(x2).
課堂教學(xué)設(shè)計(jì)說(shuō)明
是函數(shù)的一個(gè)重要性質(zhì),是研究函數(shù)時(shí)經(jīng)常要注意的一個(gè)性質(zhì).并且在比較幾個(gè)數(shù)的大小、對(duì)函數(shù)作定性分析、以及與其他知識(shí)的綜合應(yīng)用上都有廣泛的應(yīng)用.對(duì)學(xué)生來(lái)說(shuō),早已有所知,然而沒(méi)有給出過(guò)定義,只是從直觀(guān)上接觸過(guò)這一性質(zhì).學(xué)生對(duì)此有一定的感性認(rèn)識(shí),對(duì)概念的理解有一定好處,但另一方面學(xué)生也會(huì)覺(jué)得是已經(jīng)學(xué)過(guò)的知識(shí),感覺(jué)乏味.因此,在設(shè)計(jì)教案時(shí),加強(qiáng)了對(duì)概念的分析,希望能夠使學(xué)生認(rèn)識(shí)到看似簡(jiǎn)單的定義中有不少值得去推敲、去琢磨的東西,其中甚至包含著辯證法的原理.
另外,對(duì)概念的分析是在引進(jìn)一個(gè)新概念時(shí)必須要做的,對(duì)概念的深入的正確的理解往往是學(xué)生認(rèn)知過(guò)程中的難點(diǎn).因此在本教案的設(shè)計(jì)過(guò)程中突出對(duì)概念的分析不僅僅是為了分析函數(shù)單調(diào)性的定義,而且想讓學(xué)生對(duì)如何學(xué)會(huì)、弄懂一個(gè)概念有初步的認(rèn)識(shí),并且在以后的學(xué)習(xí)中學(xué)有所用.
還有,使用函數(shù)單調(diào)性定義證明是一個(gè)難點(diǎn),學(xué)生剛剛接觸這種證明方法,給出一定的步驟是必要的,有利于學(xué)生理解概念,也可以對(duì)學(xué)生掌握證明方法、形成證明思路有所幫助.另外,這也是以后要學(xué)習(xí)的不等式證明方法中的比較化的基本思路,現(xiàn)在提出要求,對(duì)今后的教學(xué)作一定的鋪墊.
對(duì)數(shù)函數(shù)教案3
【學(xué)習(xí)目標(biāo)】
一、過(guò)程目標(biāo)
1通過(guò)師生之間、學(xué)生與學(xué)生之間的互相交流,培養(yǎng)學(xué)生的數(shù)學(xué)交流能力和與人合作的精神。
2通過(guò)對(duì)對(duì)數(shù)函數(shù)的學(xué)習(xí),樹(shù)立相互聯(lián)系、相互轉(zhuǎn)化的觀(guān)點(diǎn),滲透數(shù)形結(jié)合的數(shù)學(xué)思想。
3通過(guò)對(duì)對(duì)數(shù)函數(shù)有關(guān)性質(zhì)的研究,培養(yǎng)學(xué)生觀(guān)察、分析、歸納的思維能力。
二、識(shí)技能目標(biāo)
1理解對(duì)數(shù)函數(shù)的概念,能正確描繪對(duì)數(shù)函數(shù)的圖象,感受研究對(duì)數(shù)函數(shù)的意義。
2掌握對(duì)數(shù)函數(shù)的性質(zhì),并能初步應(yīng)用對(duì)數(shù)的性質(zhì)解決簡(jiǎn)單問(wèn)題。
三、情感目標(biāo)
1通過(guò)學(xué)習(xí)對(duì)數(shù)函數(shù)的概念、圖象和性質(zhì),使學(xué)生體會(huì)知識(shí)之間的有機(jī)聯(lián)系,激發(fā)學(xué)生的學(xué)習(xí)興趣。
2在教學(xué)過(guò)程中,通過(guò)對(duì)數(shù)函數(shù)有關(guān)性質(zhì)的研究,培養(yǎng)觀(guān)察、分析、歸納的思維能力以及數(shù)學(xué)交流能力,增強(qiáng)學(xué)習(xí)的'積極性,同時(shí)培養(yǎng)學(xué)生傾聽(tīng)、接受別人意見(jiàn)的優(yōu)良品質(zhì)。
教學(xué)重點(diǎn)難點(diǎn):
1對(duì)數(shù)函數(shù)的定義、圖象和性質(zhì)。
2對(duì)數(shù)函數(shù)性質(zhì)的初步應(yīng)用。
教學(xué)工具:多媒體
【學(xué)前準(zhǔn)備】對(duì)照指數(shù)函數(shù)試研究對(duì)數(shù)函數(shù)的定義、圖象和性質(zhì)。
對(duì)數(shù)函數(shù)教案4
一、說(shuō)教材
1、教材的地位和作用
函數(shù)是高中數(shù)學(xué)的核心,而對(duì)數(shù)函數(shù)是高中階段所要研究的重要的基本初等函數(shù)之一.本節(jié)內(nèi)容是在學(xué)生已經(jīng)學(xué)過(guò)指數(shù)函數(shù)、對(duì)數(shù)及反函數(shù)的基礎(chǔ)上引入的,因此既是對(duì)上述知識(shí)的應(yīng)用,也是對(duì)函數(shù)這一重要數(shù)學(xué)思想的進(jìn)一步認(rèn)識(shí)與理解.對(duì)數(shù)函數(shù)在生產(chǎn)、生活實(shí)踐中都有許多應(yīng)用.本節(jié)課的學(xué)習(xí)使學(xué)生的知識(shí)體系更加完整、系統(tǒng),為學(xué)生今后進(jìn)一步學(xué)習(xí)對(duì)數(shù)方程、對(duì)數(shù)不等式等提供了必要的基礎(chǔ)知識(shí).
2、教學(xué)目標(biāo)的確定及依據(jù)
根據(jù)教學(xué)大綱要求,結(jié)合教材,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,我制定了如下的教學(xué)目標(biāo):
(1) 知識(shí)目標(biāo):理解對(duì)數(shù)函數(shù)的意義;掌握對(duì)數(shù)函數(shù)的圖像與性質(zhì);初步學(xué)會(huì)用
對(duì)數(shù)函數(shù)的性質(zhì)解決簡(jiǎn)單的問(wèn)題.
(2) 能力目標(biāo):滲透類(lèi)比、數(shù)形結(jié)合、分類(lèi)討論等數(shù)學(xué)思想方法,培養(yǎng)學(xué)生觀(guān)察、
分析、歸納等邏輯思維能力.
(3) 情感目標(biāo):通過(guò)指數(shù)函數(shù)和對(duì)數(shù)函數(shù)在圖像與性質(zhì)上的對(duì)比,使學(xué)生欣賞數(shù)
學(xué)的精確和美妙之處,調(diào)動(dòng)學(xué)生學(xué)習(xí)數(shù)學(xué)的`積極性.
3、教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):對(duì)數(shù)函數(shù)的意義、圖像與性質(zhì).
難點(diǎn):對(duì)數(shù)函數(shù)性質(zhì)中對(duì)于在a1與01兩種情況函數(shù)值的不同變化.
二、說(shuō)教法
學(xué)生在整個(gè)教學(xué)過(guò)程中始終是認(rèn)知的主體和發(fā)展的主體,教師作為學(xué)生學(xué)習(xí)的指導(dǎo)者,應(yīng)充分地調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性和主動(dòng)性,有效地滲透數(shù)學(xué)思想方法.根據(jù)這樣的原則和所要完成的教學(xué)目標(biāo),對(duì)于本節(jié)課我主要考慮了以下兩個(gè)方面:
1、教學(xué)方法:
(1)啟發(fā)引導(dǎo)學(xué)生實(shí)驗(yàn)、觀(guān)察、聯(lián)想、思考、分析、歸納;
(2)采用“從特殊到一般”、“從具體到抽象”的方法;
(3)滲透類(lèi)比、數(shù)形結(jié)合、分類(lèi)討論等數(shù)學(xué)思想方法.
2、教學(xué)手段:
計(jì)算機(jī)多媒體輔助教學(xué).
三、說(shuō)學(xué)法
“授之以魚(yú),不如授之以漁”,方法的掌握,思想的形成,才能使學(xué)生受益終身.本節(jié)課注重調(diào)動(dòng)學(xué)生積極思考、主動(dòng)探索,盡可能地增加學(xué)生參與教學(xué)活動(dòng)的時(shí)間和空間,我進(jìn)行了以下學(xué)法指導(dǎo):
(1)類(lèi)比學(xué)習(xí):與指數(shù)函數(shù)類(lèi)比學(xué)習(xí)對(duì)數(shù)函數(shù)的圖像與性質(zhì).
(2)探究定向性學(xué)習(xí):學(xué)生在教師建立的情境下,通過(guò)思考、分析、操作、探索,
歸納得出對(duì)數(shù)函數(shù)的圖像與性質(zhì).
(3)主動(dòng)合作式學(xué)習(xí):學(xué)生在歸納得出對(duì)數(shù)函數(shù)的圖像與性質(zhì)時(shí),通過(guò)小組討論,
使問(wèn)題得以圓滿(mǎn)解決.
四、說(shuō)教程
1、溫故知新
我通過(guò)復(fù)習(xí)細(xì)胞分裂問(wèn)題,由指數(shù)函數(shù) 引導(dǎo)學(xué)生逐步得到對(duì)數(shù)函數(shù)的意義及對(duì)數(shù)函數(shù)與指數(shù)函數(shù)的關(guān)系:互為反函數(shù).
設(shè)計(jì)意圖:既復(fù)習(xí)了指數(shù)函數(shù)和反函數(shù)的有關(guān)知識(shí),又與本節(jié)內(nèi)容有密切關(guān)系,
有利于引出新課.為學(xué)生理解新知清除了障礙,有意識(shí)地培養(yǎng)學(xué)生
分析問(wèn)題的能力.
2、探求新知
對(duì)數(shù)函數(shù)教案5
1.掌握對(duì)數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進(jìn)行初步的應(yīng)用。
。1) 能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對(duì)數(shù)函數(shù)的定義,了解對(duì)底數(shù)的要求,及對(duì)定義域的要求,能利用互為反函數(shù)的兩個(gè)函數(shù)圖象間的關(guān)系正確描繪對(duì)數(shù)函數(shù)的圖象。
。2) 能把握指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的實(shí)質(zhì)去研究認(rèn)識(shí)對(duì)數(shù)函數(shù)的性質(zhì),初步學(xué)會(huì)用對(duì)數(shù)函數(shù)的性質(zhì)解決簡(jiǎn)單的問(wèn)題。
2.通過(guò)對(duì)數(shù)函數(shù)概念的學(xué)習(xí),樹(shù)立相互聯(lián)系相互轉(zhuǎn)化的觀(guān)點(diǎn),通過(guò)對(duì)數(shù)函數(shù)圖象和性質(zhì)的學(xué)習(xí),滲透數(shù)形結(jié)合,分類(lèi)討論等思想,注重培養(yǎng)學(xué)生的`觀(guān)察,分析,歸納等邏輯思維能力。
3.通過(guò)指數(shù)函數(shù)與對(duì)數(shù)函數(shù)在圖象與性質(zhì)上的對(duì)比,對(duì)學(xué)生進(jìn)行對(duì)稱(chēng)美,簡(jiǎn)潔美等審美教育,調(diào)動(dòng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。
高一數(shù)學(xué)對(duì)數(shù)函數(shù)教案:教材分析
。1) 對(duì)數(shù)函數(shù)又是函數(shù)中一類(lèi)重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過(guò)對(duì)數(shù)與常用對(duì)數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的。故是對(duì)上述知識(shí)的應(yīng)用,也是對(duì)函數(shù)這一重要數(shù)學(xué)思想的進(jìn)一步認(rèn)識(shí)與理解。對(duì)數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識(shí)體系更加完整,系統(tǒng),同時(shí)又是對(duì)數(shù)和函數(shù)知識(shí)的拓展與延伸。它是解決有關(guān)自然科學(xué)領(lǐng)域中實(shí)際問(wèn)題的重要工具,是學(xué)生今后學(xué)習(xí)對(duì)數(shù)方程,對(duì)數(shù)不等式的基礎(chǔ)。
。2) 本節(jié)的教學(xué)重點(diǎn)是理解對(duì)數(shù)函數(shù)的定義,掌握對(duì)數(shù)函數(shù)的圖象性質(zhì)。難點(diǎn)是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對(duì)數(shù)函數(shù)的圖象和性質(zhì)。由于對(duì)數(shù)函數(shù)的概念是一個(gè)抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對(duì)數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應(yīng)成為教學(xué)的重點(diǎn)。
。3) 本節(jié)課的主線(xiàn)是對(duì)數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問(wèn)題都應(yīng)圍繞著這條主線(xiàn)展開(kāi)。而通過(guò)互為反函數(shù)的兩個(gè)函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學(xué)生不適應(yīng),把握不住關(guān)鍵,所以應(yīng)是本節(jié)課的難點(diǎn)。
高一數(shù)學(xué)對(duì)數(shù)函數(shù)教案:教法建議
。1) 對(duì)數(shù)函數(shù)在引入時(shí),就應(yīng)從學(xué)生熟悉的指數(shù)問(wèn)題出發(fā),通過(guò)對(duì)指數(shù)函數(shù)的認(rèn)識(shí)逐步轉(zhuǎn)化為對(duì)對(duì)數(shù)函數(shù)的認(rèn)識(shí),而且畫(huà)對(duì)數(shù)函數(shù)圖象時(shí),既要考慮到對(duì)底數(shù) 的分類(lèi)討論而且對(duì)每一類(lèi)問(wèn)題也可以多選幾個(gè)不同的底,畫(huà)在同一個(gè)坐標(biāo)系內(nèi),便于觀(guān)察圖象的特征,找出共性,歸納性質(zhì)。
。2) 在本節(jié)課中結(jié)合對(duì)數(shù)函數(shù)教學(xué)的特點(diǎn),一定要讓學(xué)生動(dòng)手做,動(dòng)腦想,大膽猜,要以學(xué)生的研究為主,教師只是不斷地反函數(shù)這條主線(xiàn)引導(dǎo)學(xué)生思考的方向。這樣既增強(qiáng)了學(xué)生的參與意識(shí)又教給他們思考問(wèn)題的方法,獲取知識(shí)的途徑,使學(xué)生學(xué)有所思,思有所得,練有所獲,,從而提高學(xué)習(xí)興趣。
對(duì)數(shù)函數(shù)教案6
一、課前準(zhǔn)備:
【自主梳理】
1.對(duì)數(shù):
(1) 一般地,如果 ,那么實(shí)數(shù) 叫做________________,記為_(kāi)_______,其中 叫做對(duì)數(shù)的_______, 叫做________.
(2)以10為底的對(duì)數(shù)記為_(kāi)_______,以 為底的對(duì)數(shù)記為_(kāi)______.
(3) , .
2.對(duì)數(shù)的運(yùn)算性質(zhì):
(1)如果 ,那么 ,
.
(2)對(duì)數(shù)的換底公式: .
3.對(duì)數(shù)函數(shù):
一般地,我們把函數(shù)____________叫做對(duì)數(shù)函數(shù),其中 是自變量,函數(shù)的定義域是______.
4.對(duì)數(shù)函數(shù)的圖像與性質(zhì):
a1 0
圖象性
質(zhì) 定義域:___________
值域:_____________
過(guò)點(diǎn)(1,0),即當(dāng)x=1時(shí),y=0
x(0,1)時(shí)_________
x(1,+)時(shí)________ x(0,1)時(shí)_________
x(1,+)時(shí)________
在___________上是增函數(shù) 在__________上是減函數(shù)
【自我檢測(cè)】
1. 的定義域?yàn)開(kāi)________.
2.化簡(jiǎn): .
3.不等式 的解集為_(kāi)_______________.
4.利用對(duì)數(shù)的換底公式計(jì)算: .
5.函數(shù) 的奇偶性是____________.
6.對(duì)于任意的 ,若函數(shù) ,則 與 的大小關(guān)系是___________________________.
二、課堂活動(dòng):
【例1】填空題:
(1) .
(2)比較 與 的大小為_(kāi)__________.
(3)如果函數(shù) ,那么 的最大值是_____________.
(4)函數(shù) 的奇偶性是___________.
【例2】求函數(shù) 的定義域和值域.
【例3】已知函數(shù) 滿(mǎn)足 .
(1)求 的解析式;
(2)判斷 的`奇偶性;
(3)解不等式 .
課堂小結(jié)
三、課后作業(yè)
1. .略
2.函數(shù) 的定義域?yàn)開(kāi)______________.
3.函數(shù) 的值域是_____________.
4.若 ,則 的取值范圍是_____________.
5.設(shè) 則 的大小關(guān)系是_____________.
6.設(shè)函數(shù) ,若 ,則 的取值范圍為_(kāi)________________.
7.當(dāng) 時(shí),不等式 恒成立,則 的取值范圍為_(kāi)_____________.
8.函數(shù) 在區(qū)間 上的值域?yàn)?,則 的最小值為_(kāi)___________.
9.已知 .
(1)求 的定義域;
(2)判斷 的奇偶性并予以證明;
(3)求使 的 的取值范圍.
10.對(duì)于函數(shù) ,回答下列問(wèn)題:
(1)若 的定義域?yàn)?,求實(shí)數(shù) 的取值范圍;
(2)若 的值域?yàn)?,求實(shí)數(shù) 的取值范圍;
(3)若函數(shù) 在 內(nèi)有意義,求實(shí)數(shù) 的取值范圍.
四、糾錯(cuò)分析
錯(cuò)題卡 題 號(hào) 錯(cuò) 題 原 因 分 析
高二數(shù)學(xué)教案:對(duì)數(shù)與對(duì)數(shù)函數(shù)
一、課前準(zhǔn)備:
【自主梳理】
1.對(duì)數(shù)
(1)以 為底的 的對(duì)數(shù), ,底數(shù),真數(shù).
(2) , .
(3)0,1.
2.對(duì)數(shù)的運(yùn)算性質(zhì)
(1) , , .
(2) .
3.對(duì)數(shù)函數(shù)
, .
4.對(duì)數(shù)函數(shù)的圖像與性質(zhì)
a1 0
圖象性質(zhì) 定義域:(0,+)
值域:R
過(guò)點(diǎn)(1,0),即當(dāng)x=1時(shí),y=0
x(0,1)時(shí)y0
x(1,+)時(shí)y0 x(0,1)時(shí)y0
x(1,+)時(shí)y0
在(0,+)上是增函數(shù) 在(0,+)上是減函數(shù)
【自我檢測(cè)】
1. 2. 3.
4. 5.奇函數(shù) 6. .
二、課堂活動(dòng):
【例1】填空題:
(1)3.
(2) .
(3)0.
(4)奇函數(shù).
【例2】解:由 得 .所以函數(shù) 的定義域是(0,1).
因?yàn)?,所以,當(dāng) 時(shí), ,函數(shù) 的值域?yàn)?;當(dāng) 時(shí), ,函數(shù) 的值域?yàn)?.
【例3】解:(1) ,所以 .
(2)定義域(-3,3)關(guān)于原點(diǎn)對(duì)稱(chēng),所以
,所以 為奇函數(shù).
(3) ,所以當(dāng) 時(shí), 解得
當(dāng) 時(shí), 解得 .
對(duì)數(shù)函數(shù)教案7
一、內(nèi)容與解析
(一)內(nèi)容:對(duì)數(shù)函數(shù)的性質(zhì)
(二)解析:本節(jié)課要學(xué)的內(nèi)容是對(duì)數(shù)函數(shù)的性質(zhì)及簡(jiǎn)單應(yīng)用,其核心(或關(guān)鍵)是對(duì)數(shù)函數(shù)的性質(zhì),理解它關(guān)鍵就是要利用對(duì)數(shù)函數(shù)的圖象.學(xué)生已經(jīng)掌握了對(duì)數(shù)函數(shù)的圖象特點(diǎn),本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的發(fā)展.由于它是構(gòu)造復(fù)雜函數(shù)的基本元素之一,所以對(duì)數(shù)函數(shù)的性質(zhì)是本單元的.重要內(nèi)容之一.的重點(diǎn)是掌握對(duì)數(shù)函數(shù)的性質(zhì),解決重點(diǎn)的關(guān)鍵是利用對(duì)數(shù)函數(shù)的圖象,通過(guò)數(shù)形結(jié)合的思想進(jìn)行歸納總結(jié)。
二、目標(biāo)及解析
(一)教學(xué)目標(biāo):
1.掌握對(duì)數(shù)函數(shù)的性質(zhì)并能簡(jiǎn)單應(yīng)用
(二)解析:
(1)就是指根據(jù)對(duì)數(shù)函數(shù)的兩類(lèi)圖象總結(jié)并理解對(duì)數(shù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、函數(shù)值的分布特征等性質(zhì),并能將這些性質(zhì)應(yīng)用到簡(jiǎn)單的問(wèn)題中。
三、問(wèn)題診斷分析
在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問(wèn)題是底數(shù)a對(duì)對(duì)數(shù)函數(shù)圖象和性質(zhì)的影響,產(chǎn)生這一問(wèn)題的原因是學(xué)生對(duì)參量認(rèn)識(shí)不到位,往往將參量等同于自變量.要解決這一問(wèn)題,就是要將參量的取值多元化,最好應(yīng)用幾何畫(huà)板的快捷性處理這類(lèi)問(wèn)題,其中關(guān)鍵是應(yīng)用好幾何畫(huà)板.
四、教學(xué)支持條件分析
在本節(jié)課xx的教學(xué)中,準(zhǔn)備使用xx,因?yàn)槭褂脁x,有利于xx.
五、教學(xué)過(guò)程
問(wèn)題1.先畫(huà)出下列函數(shù)的簡(jiǎn)圖,再根據(jù)圖象歸納總結(jié)對(duì)數(shù)函數(shù)的相關(guān)性質(zhì)。
設(shè)計(jì)意圖:
師生活動(dòng)(小問(wèn)題):
1.這些對(duì)數(shù)函數(shù)的解析式有什么共同特征?
2.通過(guò)這些函數(shù)的圖象請(qǐng)從值域、單調(diào)性、奇偶性方面進(jìn)行總結(jié)函數(shù)的性質(zhì)。
3.通過(guò)這些函數(shù)圖象請(qǐng)從函數(shù)值的分布角度總結(jié)相關(guān)性質(zhì)
4.通過(guò)這些函數(shù)圖象請(qǐng)總結(jié):當(dāng)自變量取一個(gè)值時(shí),函數(shù)值隨底數(shù)有什么樣的變化規(guī)律?
問(wèn)題2.先畫(huà)出下列函數(shù)的簡(jiǎn)圖,根據(jù)圖象歸納總結(jié)對(duì)數(shù)函數(shù)的相關(guān)性質(zhì)。
例1.比較下列各組數(shù)中兩個(gè)值的大。
(1) log 23.4 , log 28.5(2)log 0.31.8 , log 0.32.7
(3)log a5.1 , log a5.9 ( a>0 ,且a≠1 )
變式訓(xùn)練:1.比較下列各題中兩個(gè)值的大小:
、 log106 log108 ⑵ log0.56 log0.54
⑶ log0.10.5 log0.10. 6 ⑷ log1.50.6 log1.50.4
2.已知下列不等式,比較正數(shù)m,n的大。
(1) log 3 m < log 3 n (2) log 0.3 m > log 0.3 n
(3) log a m < loga n (0 log a n (a>1)
例2.(1)若且,求的取值范圍
(2)已知,求的取值范圍;
六、目標(biāo)檢測(cè)
1.比較,的大小:
2.求下列各式中的x的值
對(duì)數(shù)函數(shù)教案8
一、內(nèi)容與解析
(一)內(nèi)容:對(duì)數(shù)函數(shù)的概念與圖象
(二)解析:本節(jié)課要學(xué)的內(nèi)容是什么是對(duì)數(shù)函數(shù),對(duì)數(shù)函數(shù)的圖象形狀及畫(huà)法,其核心是對(duì)數(shù)函數(shù)的圖象畫(huà)法,理解它關(guān)鍵就是要理解掌握對(duì)數(shù)函數(shù)的圖象特點(diǎn).學(xué)生已經(jīng)掌握了指數(shù)函數(shù)的圖象畫(huà)法及特點(diǎn),函數(shù)圖象的一般畫(huà)法,本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的發(fā)展.由于它是研究對(duì)數(shù)函數(shù)性質(zhì)的依據(jù),是本學(xué)科的核心內(nèi)容.教學(xué)的重點(diǎn)是對(duì)數(shù)函數(shù)的圖象特點(diǎn)與畫(huà)法,解決重點(diǎn)的關(guān)鍵是利用函數(shù)圖象的一般畫(huà)法畫(huà)出具體對(duì)數(shù)函數(shù)的圖象,從而歸納出對(duì)數(shù)函數(shù)的圖象特點(diǎn),再根據(jù)圖象特點(diǎn)確定對(duì)數(shù)函數(shù)的一般畫(huà)法。
二、教學(xué)目標(biāo)及解析
(一)教學(xué)目標(biāo):
1,理解對(duì)數(shù)函數(shù)的概念;掌握對(duì)數(shù)函數(shù)的圖象的特點(diǎn)及畫(huà)法。
2,通過(guò)具體實(shí)例,直觀(guān)感受對(duì)數(shù)函數(shù)模型所刻畫(huà)的數(shù)量關(guān)系;通過(guò)具體的函數(shù)圖象的畫(huà)法逐步認(rèn)識(shí)對(duì)數(shù)函數(shù)的特征;
3,培養(yǎng)學(xué)生運(yùn)用類(lèi)比方法探索研究數(shù)學(xué)問(wèn)題的素養(yǎng),提高學(xué)生分析問(wèn)題、解決問(wèn)題的能力。
(二)解析:
1,理解對(duì)數(shù)函數(shù)的概念是來(lái)源于實(shí)踐的,能從函數(shù)概念的角度闡述其意義;掌握對(duì)數(shù)函數(shù)的圖象和性質(zhì),做到能畫(huà)草圖,能分析圖象,能從圖象觀(guān)察得出對(duì)數(shù)函數(shù)的單調(diào)性、值域、定點(diǎn)等;了解同底指數(shù)函數(shù)和對(duì)數(shù)函數(shù)互為反函數(shù),能說(shuō)出它們的圖象之間的關(guān)系,知道它們的'定義域和值域之間的關(guān)系,了解反函數(shù)帶有逆運(yùn)算的意味;
2,通過(guò)具體的實(shí)例,歸納得出一般的函數(shù)圖象特征,并能夠通過(guò)圖象特征得到相應(yīng)的函數(shù)特征,培養(yǎng)學(xué)生的作圖、識(shí)圖的能力和歸納總結(jié)能力;
3,類(lèi)比指數(shù)函數(shù)的圖象和性質(zhì)的研究方法,來(lái)研究對(duì)數(shù)函數(shù),讓學(xué)生認(rèn)識(shí)到研究問(wèn)題的方法上的一般性;同時(shí),讓學(xué)生認(rèn)識(shí)到類(lèi)比這一數(shù)學(xué)思想,即對(duì)相似的問(wèn)題可以借鑒之前問(wèn)題的研究方法來(lái)研究,有助于提高學(xué)生分析問(wèn)題、解決問(wèn)題的能力。
三、問(wèn)題診斷分析
本節(jié)課容易出現(xiàn)的問(wèn)題是:對(duì)數(shù)函數(shù)的圖象特點(diǎn)的探究容易出現(xiàn)圖象不對(duì)、歸納不全、有所偏差等情形。出現(xiàn)這一問(wèn)題的原因是:學(xué)生作圖能力、識(shí)圖能力、歸納能力不強(qiáng)。要解決這一問(wèn)題,教師要通過(guò)讓學(xué)生類(lèi)比指數(shù)函數(shù)圖象和性質(zhì)的探究,時(shí)時(shí)回過(guò)頭看看之前是怎么做的,考慮了哪些問(wèn)題,得到了哪些結(jié)論,讓學(xué)生類(lèi)比自主探究,必要時(shí)給予適當(dāng)引導(dǎo),讓學(xué)生自主的得出結(jié)論,對(duì)于出錯(cuò)的地方要讓學(xué)生討論,教師做出適當(dāng)?shù)脑u(píng)價(jià)并最終給出結(jié)論。
四、教學(xué)支持條件分析
在本節(jié)課xx的教學(xué)中,準(zhǔn)備使用xx,因?yàn)槭褂脁x,有利于xx.
五、教學(xué)過(guò)程
問(wèn)題1.前面我們已經(jīng)掌握了指數(shù)函數(shù)的概念、圖象與性質(zhì),知道了指數(shù)函數(shù)是基本初等函數(shù)之一,F(xiàn)在學(xué)習(xí)的對(duì)數(shù),也可以構(gòu)成一種函數(shù),我們稱(chēng)之為對(duì)數(shù)函數(shù),那么什么樣的函數(shù)稱(chēng)為對(duì)數(shù)函數(shù)呢?
[設(shè)計(jì)意圖]新課標(biāo)強(qiáng)調(diào)考慮到多數(shù)高中生的認(rèn)知特點(diǎn),為了有助于他們對(duì)函數(shù)概念本質(zhì)的理解,不妨從學(xué)生自己的生活經(jīng)歷和實(shí)際問(wèn)題入手。因此,新課引入不是按舊教材從反函數(shù)出發(fā),而是選擇從兩個(gè)材料引出對(duì)數(shù)函數(shù)的概念,讓學(xué)生熟悉它的知識(shí)背景,初步感受對(duì)數(shù)函數(shù)是刻畫(huà)現(xiàn)實(shí)世界的又一重要數(shù)學(xué)模型。這樣處理,對(duì)數(shù)函數(shù)顯得不抽象,學(xué)生容易接受,降低了新課教學(xué)的起點(diǎn)。
小問(wèn)題串:
1.2.2.1的`例6,考古學(xué)家是如何估算出土文物或古遺址的年代的?這種對(duì)應(yīng)關(guān)系是否形成函數(shù)關(guān)系?
2.某種細(xì)胞分裂時(shí),由1個(gè)分裂成2個(gè),2個(gè)分裂成4個(gè),如果要求這種細(xì)胞經(jīng)過(guò)多少次分裂,大約可以得到細(xì)胞1萬(wàn)個(gè),10萬(wàn)個(gè)。怎么求?相應(yīng)的對(duì)應(yīng)關(guān)系是否也形成函數(shù)關(guān)系?
3.由上述兩個(gè)實(shí)例,請(qǐng)你類(lèi)比指數(shù)函數(shù)的概念歸納對(duì)數(shù)函數(shù)的概念
觀(guān)察這些函數(shù)的特征:含有對(duì)數(shù)符號(hào),底數(shù)是常數(shù),真數(shù)是變量,從而得出對(duì)數(shù)函數(shù)的定義:函數(shù),且叫做對(duì)數(shù)函數(shù),其中是自變量,函數(shù)的定義域是(0,+).
注意:
。1)對(duì)數(shù)函數(shù)的定義與指數(shù)函數(shù)類(lèi)似,都是形式定義,注意辨別。
(2)對(duì)數(shù)函數(shù)對(duì)底數(shù)的限制。
4.根據(jù)對(duì)數(shù)函數(shù)定義填空;
例1 (1)函數(shù)y=logax2的定義域是xx(其中a1)。
(2)函數(shù)y=loga(4-x)的定義域是xx (其中a1)。
說(shuō)明:本例主要考察對(duì)數(shù)函數(shù)定義中底數(shù)和定義域的限制,加深對(duì)概念的理解,所以把教材中的解答題改為填空題,節(jié)省時(shí)間,點(diǎn)到為止,以避免挖深、拓展、引入復(fù)合函數(shù)的概念。
問(wèn)題2.對(duì)數(shù)函數(shù)的圖象是什么樣?有什么特點(diǎn)呢?
[設(shè)計(jì)意圖]舊教材是通過(guò)對(duì)稱(chēng)變換直接從指數(shù)函數(shù)的圖象得到對(duì)數(shù)函數(shù)圖象,這樣處理學(xué)生雖然會(huì)接受了這個(gè)事實(shí),但對(duì)圖象的感覺(jué)是膚淺的;這樣處理也存在著函數(shù)教學(xué)忽視圖象、性質(zhì)的認(rèn)知過(guò)程而注重應(yīng)用的功利思想。因此,本節(jié)課的設(shè)計(jì)注重引導(dǎo)學(xué)生用特殊到一般的方法探究對(duì)數(shù)函數(shù)圖象的形成過(guò)程,加深感性認(rèn)識(shí)。同時(shí),幫助學(xué)生確定探究問(wèn)題、探究方向和探究步驟,確保探究的有效性。這個(gè)環(huán)節(jié),還要借助計(jì)算機(jī)輔助教學(xué)作用,增強(qiáng)學(xué)生的直觀(guān)感受。
小問(wèn)題串:
(1)用描點(diǎn)法在同一坐標(biāo)系中畫(huà)出下列對(duì)數(shù)函數(shù)的圖象。
(2)用描點(diǎn)法在同一坐標(biāo)系中畫(huà)出下列對(duì)數(shù)函數(shù)的圖象。
(3)觀(guān)察對(duì)數(shù)函數(shù)、與、的圖象特征,看看它們有那些異同點(diǎn)。
(4)利用計(jì)算器或計(jì)算機(jī),選取底數(shù),且的若干個(gè)不同的值,在同一平面直角坐標(biāo)系中作出相應(yīng)對(duì)數(shù)函數(shù)的圖象。觀(guān)察圖象,它們有哪些共同特征?
(5)歸納出能體現(xiàn)對(duì)數(shù)函數(shù)的代表性圖象,并說(shuō)明以后如何畫(huà)對(duì)數(shù)函數(shù)的簡(jiǎn)圖。
例題
1.課本P75 A組第10題
2.求函數(shù)的定義域,并畫(huà)出函數(shù)的圖象。
六、目標(biāo)檢測(cè)
求下列函數(shù)的定義域
對(duì)數(shù)函數(shù)教案9
教學(xué)目標(biāo):
1.進(jìn)一步理解對(duì)數(shù)函數(shù)的性質(zhì),能運(yùn)用對(duì)數(shù)函數(shù)的相關(guān)性質(zhì)解決對(duì)數(shù)型函數(shù)的常見(jiàn)問(wèn)題.
2.培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,以及分析推理的能力.
教學(xué)重點(diǎn):
對(duì)數(shù)函數(shù)性質(zhì)的應(yīng)用.
教學(xué)難點(diǎn):
對(duì)數(shù)函數(shù)的性質(zhì)向?qū)?shù)型函數(shù)的演變延伸.
教學(xué)過(guò)程:
一、問(wèn)題情境
1.復(fù)習(xí)對(duì)數(shù)函數(shù)的性質(zhì).
2.回答下列問(wèn)題.
(1)函數(shù)y=log2x的.值域是;
(2)函數(shù)y=log2x(x1)的值域是;
(3)函數(shù)y=log2x(0
3.情境問(wèn)題.
函數(shù)y=log2(x2+2x+2)的定義域和值域分別如何求呢?
二、學(xué)生活動(dòng)
探究完成情境問(wèn)題.
三、數(shù)學(xué)運(yùn)用
例1求函數(shù)y=log2(x2+2x+2)的定義域和值域.
四、練習(xí):
(1)已知函數(shù)y=log2x的值域是[-2,3],則x的范圍是xx.
(2)函數(shù),x(0,8]的值域是.
(3)函數(shù)y=log (x2-6x+17)的值域.
(4)函數(shù)的值域是xx.
例2判斷下列函數(shù)的奇偶性:
(1)f (x)=lg (2)f (x)=ln( -x)
例3已知loga 0.751,試求實(shí)數(shù)a取值范圍.
例4已知函數(shù)y=loga(1-ax)(a0,a1).
(1)求函數(shù)的定義域與值域;
(2)求函數(shù)的單調(diào)區(qū)間.
練習(xí):
1.下列函數(shù)(1) y=x-1;(2) y=log2(x-1);(3) y= ;(4)y=lnx,其中值域?yàn)镽的有(請(qǐng)寫(xiě)出所有正確結(jié)論的序號(hào)).
2.函數(shù)y=lg( -1)的圖象關(guān)于對(duì)稱(chēng).
3.已知函數(shù)(a0,a1)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),那么實(shí)數(shù)m= .
4.求函數(shù),其中x [,9]的值域.
五、要點(diǎn)歸納與方法小結(jié)
(1)借助于對(duì)數(shù)函數(shù)的性質(zhì)研究對(duì)數(shù)型函數(shù)的定義域與值域;
(2)換元法;
(3)能畫(huà)出較復(fù)雜函數(shù)的圖象,根據(jù)圖象研究函數(shù)的性質(zhì)(數(shù)形結(jié)合).
六、作業(yè)
課本P70~71-4,5,10,11.
對(duì)數(shù)函數(shù)教案10
3. , (0,+)
【拓展引導(dǎo)】
當(dāng) 時(shí), 的.取值范圍是
當(dāng) 時(shí), 的取值范圍是
【總結(jié)】20xx年數(shù)學(xué)網(wǎng)為小編在此為您收集了此文章高一數(shù)學(xué)教案:對(duì)數(shù)函數(shù),今后還會(huì)發(fā)布更多更好的文章希望對(duì)大家有所幫助,祝您在數(shù)學(xué)網(wǎng)學(xué)習(xí)愉快!
對(duì)數(shù)函數(shù)教案11
教學(xué)目標(biāo):
、僬莆諏(duì)數(shù)函數(shù)的性質(zhì)。
、趹(yīng)用對(duì)數(shù)函數(shù)的性質(zhì)可以解決:對(duì)數(shù)的大小比較,求復(fù)合函數(shù)的定義域、值 域及單調(diào)性。
③ 注重函數(shù)思想、等價(jià)轉(zhuǎn)化、分類(lèi)討論等思想的滲透,提高解題能力。
教學(xué)重點(diǎn)與難點(diǎn):
對(duì)數(shù)函數(shù)的性質(zhì)的應(yīng)用。
教學(xué)過(guò)程設(shè)計(jì):
⒈復(fù)習(xí)提問(wèn):對(duì)數(shù)函數(shù)的概念及性質(zhì)。
⒉開(kāi)始正課
1 比較數(shù)的大小
例 1 比較下列各組數(shù)的大小。
、舕oga5.1 ,loga5.9 (a>0,a≠1)
、苐og0.50.6 ,logл0.5 ,lnл
師:請(qǐng)同學(xué)們觀(guān)察一下⑴中這兩個(gè)對(duì)數(shù)有何特征?
生:這兩個(gè)對(duì)數(shù)底相等。
師:那么對(duì)于兩個(gè)底相等的對(duì)數(shù)如何比大小?
生:可構(gòu)造一個(gè)以a為底的對(duì)數(shù)函數(shù),用對(duì)數(shù)函數(shù)的`單調(diào)性比大小。
師:對(duì),請(qǐng)敘述一下這道題的解題過(guò)程。
生:對(duì)數(shù)函數(shù)的單調(diào)性取決于底的大。寒(dāng)0 調(diào)遞減,所以loga5.1>loga5.9 ;當(dāng)a>1時(shí),函數(shù)y=logax單調(diào)遞 增,所以loga5.1 板書(shū): 解:。┊(dāng)0 ∵5.1<5.9 loga5.1="">loga5.9 、ⅲ┊(dāng)a>1時(shí),函數(shù)y=logax在(0,+∞)上是增函數(shù), ∵5.1<5.9 ∴l(xiāng)oga5.1 師:請(qǐng)同學(xué)們觀(guān)察一下⑵中這三個(gè)對(duì)數(shù)有何特征? 生:這三個(gè)對(duì)數(shù)底、真數(shù)都不相等。 師:那么對(duì)于這三個(gè)對(duì)數(shù)如何比大? 生:找“中間量”, log0.50.6>0,lnл>0,logл0.5<0;lnл>1, log0.50.6<1,所以logл0.5< log0.50.6< lnл。 板書(shū):略。 師:比較對(duì)數(shù)值的大小常用方法:①構(gòu)造對(duì)數(shù)函數(shù),直接利用對(duì)數(shù)函 數(shù) 的單調(diào)性比大小,②借用“中間量”間接比大小,③利用對(duì)數(shù) 函數(shù)圖象的位置關(guān)系來(lái)比大小。 2 函數(shù)的定義域, 值 域及單調(diào)性。 例 2 ⑴求函數(shù)y=的定義域。 、平獠坏仁絣og0.2(x2+2x-3)>log0.2(3x+3) 師:如何來(lái)求⑴中函數(shù)的定義域?(提示:求函數(shù)的定義域,就是要 使函數(shù)有意義。若函數(shù)中含有分母,分母不為零;有偶次根式, 被開(kāi)方式大于或等于零;若函數(shù)中有對(duì)數(shù)的形式,則真數(shù)大于 零,如果函數(shù)中同時(shí)出現(xiàn)以上幾種情況,就要全部考慮進(jìn)去,求 它們共同作用的結(jié)果。) 生:分母2x-1≠0且偶次根式的被開(kāi)方式log0.8x-1≥0,且真數(shù)x>0。 板書(shū): 解:∵ 2x-1≠0 x≠0.5 log0.8x-1≥0 , x≤0.8 x>0 x>0 ∴x(0,0.5)∪(0.5,0.8〕 師:接下來(lái)我們一起來(lái)解這個(gè)不等式。 分析:要解這個(gè)不等式,首先要使這個(gè)不等式有意義,即真數(shù)大于零, 再根據(jù)對(duì)數(shù)函數(shù)的單調(diào)性求解。 師:請(qǐng)你寫(xiě)一下這道題的解題過(guò)程。 生:<板書(shū)> 解: x2+2x-3>0 x<-3 x="">1 (3x+3)>0 , x>-1 x2+2x-3<(3x+3) -2 不等式的解為:1 例 3 求下列函數(shù)的值域和單調(diào)區(qū)間。 ⑴y=log0.5(x- x2) 、苰=loga(x2+2x-3)(a>0,a≠1) 師:求例3中函數(shù)的的值域和單調(diào)區(qū)間要用及復(fù)合函數(shù)的思想方法。 下面請(qǐng)同學(xué)們來(lái)解⑴。 生:此函數(shù)可看作是由y= log0.5u, u= x- x2復(fù)合而成。 案例背景: 對(duì)數(shù)函數(shù)是函數(shù)中又一類(lèi)重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過(guò)對(duì)數(shù)與常用對(duì)數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的.故是對(duì)上述知識(shí)的應(yīng)用,也是對(duì)函數(shù)這一重要數(shù)學(xué)思想的進(jìn)一步認(rèn)識(shí)與理解.對(duì)數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識(shí)體系更加完整,系統(tǒng),同時(shí)又是對(duì)數(shù)和函數(shù)知識(shí)的拓展與延伸.它是解決有關(guān)自然科學(xué)領(lǐng)域中實(shí)際問(wèn)題的重要工具,是學(xué)生今后學(xué)習(xí)對(duì)數(shù)方程,對(duì)數(shù)不等式的基礎(chǔ). 案例敘述: (一).創(chuàng)設(shè)情境 (師):前面的幾種函數(shù)都是以形式定義的方式給出的,今天我們將從反函數(shù)的角度介紹新的函數(shù). 反函數(shù)的實(shí)質(zhì)是研究?jī)蓚(gè)函數(shù)的關(guān)系,所以自然我們應(yīng)從大家熟悉的函數(shù)出發(fā),再研究其反函數(shù).這個(gè)熟悉的函數(shù)就是指數(shù)函數(shù). (提問(wèn)):什么是指數(shù)函數(shù)?指數(shù)函數(shù)存在反函數(shù)嗎? (學(xué)生): 是指數(shù)函數(shù),它是存在反函數(shù)的. (師):求反函數(shù)的步驟 (由一個(gè)學(xué)生口答求反函數(shù)的過(guò)程): 由 得 .又 的值域?yàn)?, 所求反函數(shù)為 . (師):那么我們今天就是研究指數(shù)函數(shù)的反函數(shù)-----對(duì)數(shù)函數(shù). (二)新課 1.(板書(shū)) 定義:函數(shù) 的反函數(shù) 叫做對(duì)數(shù)函數(shù). (師):由于定義就是從反函數(shù)角度給出的,所以下面我們的研究就從這個(gè)角度出發(fā).如從定義中你能了解對(duì)數(shù)函數(shù)的什么性質(zhì)嗎?最初步的認(rèn)識(shí)是什么? (教師提示學(xué)生從反函數(shù)的三定與三反去認(rèn)識(shí),學(xué)生自主探究,合作交流) (學(xué)生)對(duì)數(shù)函數(shù)的定義域?yàn)?,對(duì)數(shù)函數(shù)的值域?yàn)?,且底數(shù) 就是指數(shù)函數(shù)中的 ,故有著相同的限制條件 . (在此基礎(chǔ)上,我們將一起來(lái)研究對(duì)數(shù)函數(shù)的圖像與性質(zhì).) 2.研究對(duì)數(shù)函數(shù)的圖像與性質(zhì) (提問(wèn))用什么方法來(lái)畫(huà)函數(shù)圖像? (學(xué)生1)利用互為反函數(shù)的兩個(gè)函數(shù)圖像之間的關(guān)系,利用圖像變換法畫(huà)圖. (學(xué)生2)用列表描點(diǎn)法也是可以的。 請(qǐng)學(xué)生從中上述方法中選出一種,大家最終確定用圖像變換法畫(huà)圖. (師)由于指數(shù)函數(shù)的圖像按 和 分成兩種不同的類(lèi)型,故對(duì)數(shù)函數(shù)的圖像也應(yīng)以1為分界線(xiàn)分成兩種情況 和 ,并分別以 和 為例畫(huà)圖. 具體操作時(shí),要求學(xué)生做到: (1) 指數(shù)函數(shù) 和 的圖像要盡量準(zhǔn)確(關(guān)鍵點(diǎn)的位置,圖像的變化趨勢(shì)等). (2) 畫(huà)出直線(xiàn) . (3) 的圖像在翻折時(shí)先將特殊點(diǎn) 對(duì)稱(chēng)點(diǎn) 找到,變化趨勢(shì)由靠近 軸對(duì)稱(chēng)為逐漸靠近 軸,而 的圖像在翻折時(shí)可提示學(xué)生分兩段翻折,在 左側(cè)的先翻,然后再翻在 右側(cè)的部分. 學(xué)生在筆記本完成具體操作,教師在學(xué)生完成后將關(guān)鍵步驟在黑板上演示一遍,畫(huà)出 和 的圖像.(此時(shí)同底的指數(shù)函數(shù)和對(duì)數(shù)函數(shù)畫(huà)在同一坐標(biāo)系內(nèi))如圖: 教師畫(huà)完圖后再利用電腦將 和 的圖像畫(huà)在同一坐標(biāo)系內(nèi),如圖: 然后提出讓學(xué)生根據(jù)圖像說(shuō)出對(duì)數(shù)函數(shù)的性質(zhì)(要求從幾何與代數(shù)兩個(gè)角度說(shuō)明) 3. 性質(zhì) (1) 定義域: (2) 值域: 由以上兩條可說(shuō)明圖像位于 軸的右側(cè). (3)圖像恒過(guò)(1,0) (4) 奇偶性:既不是奇函數(shù)也不是偶函數(shù),即它不關(guān)于原點(diǎn)對(duì)稱(chēng),也不關(guān)于 軸對(duì)稱(chēng). (5) 單調(diào)性:與 有關(guān).當(dāng) 時(shí),在 上是增函數(shù).即圖像是上升的 當(dāng) 時(shí),在 上是減函數(shù),即圖像是下降的. 之后可以追問(wèn)學(xué)生有沒(méi)有最大值和最小值,當(dāng)?shù)玫椒穸ù鸢笗r(shí),可以再問(wèn)能否看待何時(shí)函數(shù)值為正?學(xué)生看著圖可以答出應(yīng)有兩種情況: 當(dāng) 時(shí),有 ;當(dāng) 時(shí),有 . 學(xué)生回答后教師可指導(dǎo)學(xué)生巧記這個(gè)結(jié)論的方法:當(dāng)?shù)讛?shù)與真數(shù)在1的同側(cè)時(shí)函數(shù)值為正,當(dāng)?shù)讛?shù)與真數(shù)在1的兩側(cè)時(shí),函數(shù)值為負(fù),并把它當(dāng)作第(6)條性質(zhì)板書(shū)記下來(lái). 最后教師在總結(jié)時(shí),強(qiáng)調(diào)記住性質(zhì)的關(guān)鍵在于要腦中有圖.且應(yīng)將其性質(zhì)與指數(shù)函數(shù)的性質(zhì)對(duì)比記憶.(特別強(qiáng)調(diào)它們單調(diào)性的一致性) 對(duì)圖像和性質(zhì)有了一定的了解后,一起來(lái)看看它們的應(yīng)用. (三).簡(jiǎn)單應(yīng)用 1. 研究相關(guān)函數(shù)的性質(zhì) 例1. 求下列函數(shù)的定義域: (1) (2) (3) 先由學(xué)生依次列出相應(yīng)的不等式,其中特別要注意對(duì)數(shù)中真數(shù)和底數(shù)的'條件限制. 2. 利用單調(diào)性比較大小 例2. 比較下列各組數(shù)的大小 (1) 與 ; (2) 與 ; (3) 與 ; (4) 與 . 讓學(xué)生先說(shuō)出各組數(shù)的特征即它們的底數(shù)相同,故可以構(gòu)造對(duì)數(shù)函數(shù)利用單調(diào)性來(lái)比大小.最后讓學(xué)生以其中一組為例寫(xiě)出詳細(xì)的比較過(guò)程. 三.拓展練習(xí) 練習(xí):若 ,求 的取值范圍. 四.小結(jié)及作業(yè) 案例反思: 本節(jié)的教學(xué)重點(diǎn)是理解對(duì)數(shù)函數(shù)的定義,掌握對(duì)數(shù)函數(shù)的圖象性質(zhì).難點(diǎn)是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對(duì)數(shù)函數(shù)的圖象和性質(zhì).由于對(duì)數(shù)函數(shù)的概念是一個(gè)抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對(duì)數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,通過(guò)互為反函數(shù)的兩個(gè)函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學(xué)生不適應(yīng),把握不住關(guān)鍵,因而在教學(xué)上采取教師逐步引導(dǎo),學(xué)生自主合作的方式,從學(xué)生熟悉的指數(shù)問(wèn)題出發(fā),通過(guò)對(duì)指數(shù)函數(shù)的認(rèn)識(shí)逐步轉(zhuǎn)化為對(duì)對(duì)數(shù)函數(shù)的認(rèn)識(shí),而且畫(huà)對(duì)數(shù)函數(shù)圖象時(shí),既要考慮到對(duì)底數(shù)的分類(lèi)討論而且對(duì)每一類(lèi)問(wèn)題也可以多選幾個(gè)不同的底,畫(huà)在同一個(gè)坐標(biāo)系內(nèi),便于觀(guān)察圖象的特征,找出共性,歸納性質(zhì). 在教學(xué)中一定要讓學(xué)生動(dòng)手做,動(dòng)腦想,大膽猜,要以學(xué)生的研究為主,教師只是不斷地以反函數(shù)這條主線(xiàn)引導(dǎo)學(xué)生思考的方向.這樣既增強(qiáng)了學(xué)生的參與意識(shí)又教給他們思考問(wèn)題的方法,獲取知識(shí)的途徑,使學(xué)生學(xué)有所思,思有所得,練有所獲,,從而提高學(xué)習(xí)興趣. 對(duì)數(shù)函數(shù)及其性質(zhì)教學(xué)設(shè)計(jì) 1.教學(xué)方法 建構(gòu)主義學(xué)習(xí)觀(guān),強(qiáng)調(diào)以學(xué)生為中心,學(xué)生在教師指導(dǎo)下對(duì)知識(shí)的主動(dòng)建構(gòu)。它既強(qiáng)調(diào)學(xué)習(xí)者的認(rèn)知主體作用,又不忽視教師的指導(dǎo)作用。 高中一年級(jí)的學(xué)生正值身心發(fā)展的過(guò)渡時(shí)期,思維活躍,具有一定的獨(dú)立性,喜歡新鮮事物,敢于大膽發(fā)表自己的見(jiàn)解,不過(guò)思維還不是很成熟. 在目標(biāo)分析的基礎(chǔ)上,根據(jù)建構(gòu)主義學(xué)習(xí)觀(guān),及學(xué)生的認(rèn)知特點(diǎn),我擬采用“探究式”教學(xué)方法。將一節(jié)課的核心內(nèi)容通過(guò)四個(gè)活動(dòng)的形式引導(dǎo)學(xué)生對(duì)知識(shí)進(jìn)行主動(dòng)建構(gòu)。其理論依據(jù)為建構(gòu)主義學(xué)習(xí)理論。它很好地體現(xiàn)了“學(xué)生為主體,教師為主導(dǎo),問(wèn)題為主線(xiàn),思維為主攻”的“四為主”的教學(xué)思想。 2.學(xué)法指導(dǎo) 新課程強(qiáng)調(diào)“以學(xué)生發(fā)展為核心”,強(qiáng)調(diào)培養(yǎng)學(xué)生的自主探索能力與合作學(xué)習(xí)能力。因此本節(jié)課學(xué)生將在教師的啟發(fā)誘導(dǎo)下對(duì)教師提供的素材經(jīng)歷創(chuàng)設(shè)情境→獲得新知→作圖察質(zhì)→問(wèn)題探究→歸納性質(zhì)→學(xué)以致用→趁熱打鐵→畫(huà)龍點(diǎn)睛→自我提升的過(guò)程,這一過(guò)程將激發(fā)學(xué)生積極參與到教學(xué)活動(dòng)中來(lái)。 3.教學(xué)手段 本節(jié)課我選擇計(jì)算機(jī)輔助教學(xué)。增大課堂容量,提高課堂效率;激發(fā)學(xué)生的學(xué)習(xí)興趣,展示運(yùn)動(dòng)變化過(guò)程,使信息技術(shù)真正為教學(xué)服務(wù). 4.教學(xué)流程 四、教學(xué)過(guò)程 教學(xué)過(guò)程 設(shè)計(jì)意圖 一、創(chuàng)設(shè)情境,導(dǎo)入新課 活動(dòng)1:(1)同學(xué)們有沒(méi)有看過(guò)《冰河世紀(jì)》這個(gè)電影?先播放視頻,引入課題。 (2)考古學(xué)家經(jīng)過(guò)長(zhǎng)期實(shí)踐,發(fā)現(xiàn)凍土層內(nèi)某微量元素的含量P與年份t的關(guān)系:,這是一個(gè)指數(shù)式,由指數(shù)與對(duì)數(shù)的關(guān)系,此指數(shù)式可改寫(xiě)為對(duì)數(shù)式。 。3)考古學(xué)家提取了凍土層內(nèi)微量元素,確定它的殘余量約占原始含量的1%,即P=0.01,代入對(duì)數(shù)式,可知 。4)由表格中的數(shù)據(jù): 碳14的含量P 0.5 0.3 0.1 0.01 0.001 生物死亡年數(shù)t 5730 9953 19035 39069 57104 可讀出精確年份為39069,當(dāng)P值為0.001時(shí),t大約為57104年,所以每一個(gè)P值都與一個(gè)t值相對(duì)應(yīng),是一一對(duì)應(yīng)關(guān)系,所以p與t之間是函數(shù)關(guān)系。 。5)數(shù)學(xué)知識(shí)不但可以解決猛犸象的封存時(shí)間,也可以與其他學(xué)科的知識(shí)相結(jié)合來(lái)解決視頻中的遺留問(wèn)題,就是不知道咱們中國(guó)的猛犸象克隆問(wèn)題會(huì)由班里的哪位同學(xué)解決,我們拭目以待。 。6)把函數(shù)模型一般化,可給出對(duì)數(shù)函數(shù)的概念。 通過(guò)這個(gè)實(shí)例激發(fā)學(xué)生學(xué)習(xí)的興趣,使學(xué)生認(rèn)識(shí)到數(shù)學(xué)來(lái)源于實(shí)踐,并為實(shí)踐服務(wù)。 和學(xué)生一起分析處理問(wèn)題,體會(huì)函數(shù)關(guān)系,并體現(xiàn)學(xué)生的主體地位。 二、形成概念、獲得新知 定義:一般地,我們把函數(shù) 叫做對(duì)數(shù)函數(shù)。其中x是自變量,定義域?yàn)?/p> 例1求下列函數(shù)的定義域: 。1);(2). 解:(1)函數(shù)的定義域是。 (2)函數(shù)的定義域是。 歸納:形如的的函數(shù)的定義域要考慮— 三、探究歸納、總結(jié)性質(zhì) 活動(dòng)1:小組合作,每個(gè)組內(nèi)分別利用描點(diǎn)法畫(huà)和的圖象,組長(zhǎng)合理分工,看哪個(gè)小組完成的最好。 選取完成最好、最快的小組,由組長(zhǎng)在班內(nèi)展示。 活動(dòng)2:小組討論,對(duì)任意的a值,對(duì)數(shù)函數(shù)圖象怎么畫(huà)? 教師帶領(lǐng)學(xué)生一起舉手,共同畫(huà)圖。 活動(dòng)3:對(duì)a>1時(shí),觀(guān)察圖象,你能發(fā)現(xiàn)圖象有哪些圖形特征嗎? 然后由學(xué)生討論完成下表左邊: 函數(shù)的圖象特征 函數(shù)的性質(zhì) 圖象都位于y軸的右方 定義域是 圖象向上向下無(wú)限延展 值域是R 圖象都經(jīng)過(guò)點(diǎn)(1,0) 當(dāng)x=1時(shí),總有y=0 當(dāng)a>1時(shí),圖象逐漸上升; 當(dāng)0當(dāng)a>1時(shí),是增函數(shù) 當(dāng)0通過(guò)對(duì)定義的進(jìn)一步理解,培養(yǎng)學(xué)生思維的嚴(yán)密性和批判性。 通過(guò)作出具體函數(shù)圖象,讓學(xué)生體會(huì)由特殊到一般的研究方法。 學(xué)生可類(lèi)比指數(shù)函數(shù)的.研究過(guò)程,獨(dú)立研究對(duì)數(shù)函數(shù)性質(zhì),從而培養(yǎng)學(xué)生探究歸納、分析問(wèn)題、解決問(wèn)題的能力。 師生一起完成表格右邊,對(duì)0<a<1時(shí),找兩位同學(xué)一問(wèn)一答共同完成,再次體現(xiàn)數(shù)形結(jié)合。 四、探究延伸 (1)探討對(duì)數(shù)函數(shù)中的符號(hào)規(guī)律. 。2)探究底數(shù)分別為與的對(duì)數(shù)函數(shù)圖像的關(guān)系. 。3)在第一象限中,探究底數(shù)分別為的對(duì)數(shù)函數(shù)圖象與底數(shù)a的關(guān)系. 五、分析例題、鞏固新知 例2比較下列各組數(shù)中兩個(gè)值的大。 。1),; (2),; 。3),。 解: 。1)在上是增函數(shù), 且3.4<8.5, 。2)在上是減函數(shù), 且3.4<8.5,. 。3)注:底數(shù)非常數(shù),要分類(lèi)討論的范圍. 當(dāng)a>1時(shí),在上是增函數(shù), 且3.4<8.5,; 當(dāng)0且3.4<8.5, 練習(xí)1:比較下列兩個(gè)數(shù)的大。 練習(xí)2:比較下列兩個(gè)數(shù)的大。 。ㄕ覍W(xué)生上黑板講解練習(xí)2的第一題,強(qiáng)調(diào)多種做法,一起完成第二小題.) 考察學(xué)生對(duì)對(duì)數(shù)函數(shù)圖像的理解與掌握,進(jìn)一步強(qiáng)調(diào)數(shù)形結(jié)合。 通過(guò)運(yùn)用對(duì)數(shù)函數(shù)的單調(diào)性“比較兩數(shù)的大小”培養(yǎng)學(xué)生運(yùn)用函數(shù)的觀(guān)點(diǎn)解決問(wèn)題,逐步向?qū)W生滲透函數(shù)的思想,分類(lèi)討論的思想,提高學(xué)生的發(fā)散思維能力。 六、對(duì)比總結(jié)、深化認(rèn)識(shí) 先總結(jié)本節(jié)課所學(xué)內(nèi)容,由學(xué)生總結(jié),教師補(bǔ)充,強(qiáng)調(diào)哪些是重要內(nèi)容 。1)對(duì)數(shù)函數(shù)的定義; 。2)對(duì)數(shù)函數(shù)的圖象與性質(zhì); (3)對(duì)數(shù)函數(shù)的三個(gè)結(jié)論; 。4)對(duì)數(shù)函數(shù)的圖象與性質(zhì)的應(yīng)用. 七、課后作業(yè)、鞏固提高 。1)理解對(duì)數(shù)函數(shù)的圖象與性質(zhì); 。2)課本74頁(yè),習(xí)題2.2中7,8; 。3)上網(wǎng)搜集一些運(yùn)用對(duì)數(shù)函數(shù)解決的實(shí)際問(wèn)題,根據(jù)今天學(xué)習(xí)的知識(shí)予以解答. 八、評(píng)價(jià)分析 堅(jiān)持過(guò)程性評(píng)價(jià)和階段性評(píng)價(jià)相結(jié)合的原則。堅(jiān)持激勵(lì)與批評(píng)相結(jié)合的原則. 教學(xué)過(guò)程中,評(píng)價(jià)學(xué)生的情緒、狀態(tài)、積極性、自信心、合作交流的意識(shí)與獨(dú)立思考的能力; 在學(xué)習(xí)互動(dòng)中,評(píng)價(jià)學(xué)生思維發(fā)展的水平; 在解決問(wèn)題練習(xí)和作業(yè)中,評(píng)價(jià)學(xué)生基礎(chǔ)知識(shí)基本技能的掌握. 適時(shí)地組織和指導(dǎo)學(xué)生歸納知識(shí)和技能的一般規(guī)律,有助于學(xué)生更好地學(xué)習(xí)、記憶和應(yīng)用,發(fā)揮知識(shí)系統(tǒng)的整體優(yōu)勢(shì),并為后續(xù)學(xué)習(xí)打好基礎(chǔ)。 課后作業(yè)的設(shè)計(jì)意圖: 一、鞏固學(xué)生本節(jié)課所學(xué)的知識(shí)并落實(shí)教學(xué)目標(biāo);二、讓不同基礎(chǔ)的學(xué)生學(xué)到不同的技能,體現(xiàn)因材施教的原則; 三、使同學(xué)們體會(huì)到科學(xué)的探索永無(wú)止境,為數(shù)學(xué)的學(xué)習(xí)營(yíng)造一種良好的科學(xué)氛圍。 教學(xué)目標(biāo): (一)教學(xué)知識(shí)點(diǎn): 1、對(duì)數(shù)函數(shù)的概念; 2、對(duì)數(shù)函數(shù)的圖象和性質(zhì)、 (二)能力訓(xùn)練要求: 1、理解對(duì)數(shù)函數(shù)的概念; 2、掌握對(duì)數(shù)函數(shù)的圖象和性質(zhì) (三)德育滲透目標(biāo): 1、用聯(lián)系的觀(guān)點(diǎn)分析問(wèn)題; 2、認(rèn)識(shí)事物之間的互相轉(zhuǎn)化 教學(xué)重點(diǎn): 對(duì)數(shù)函數(shù)的圖象和性質(zhì) 教學(xué)難點(diǎn): 對(duì)數(shù)函數(shù)與指數(shù)函數(shù)的關(guān)系 教學(xué)方法: 聯(lián)想、類(lèi)比、發(fā)現(xiàn)、探索 教學(xué)輔助: 多媒體 教學(xué)過(guò)程: 一、引入對(duì)數(shù)函數(shù)的概念 由學(xué)生的預(yù)習(xí),可以直接回答“對(duì)數(shù)函數(shù)的概念” 由指數(shù)、對(duì)數(shù)的定義及指數(shù)函數(shù)的概念,我們進(jìn)行類(lèi)比,可否猜想有: 問(wèn)題: 1、指數(shù)函數(shù)是否存在反函數(shù)? 2、求指數(shù)函數(shù)的反函數(shù) 、;指出反函數(shù)的定義域。 3、結(jié)論 所以函數(shù)與指數(shù)函數(shù)互為反函數(shù)。 這節(jié)課我們所要研究的便是指數(shù)函數(shù)的反函數(shù)——對(duì)數(shù)函數(shù)。 二、講授新課 1、對(duì)數(shù)函數(shù)的定義: 定義域:(0,+∞);值域:(-∞,+∞) 2、對(duì)數(shù)函數(shù)的圖象和性質(zhì): 1、因?yàn)閷?duì)數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù)。所以與圖象關(guān)于直線(xiàn)對(duì)稱(chēng)。 2、因此,我們只要畫(huà)出和圖象關(guān)于直線(xiàn)對(duì)稱(chēng)的曲線(xiàn),就可以得到的圖象。 3、研究指數(shù)函數(shù)時(shí),我們分別研究了底數(shù)和兩種情形。 4、那么我們可以畫(huà)出與圖象關(guān)于直線(xiàn)對(duì)稱(chēng)的曲線(xiàn)得到的圖象。 5、還可以畫(huà)出與圖象關(guān)于直線(xiàn)對(duì)稱(chēng)的曲線(xiàn)得到的圖象。 6、請(qǐng)同學(xué)們作出與的草圖,并觀(guān)察它們具有一些什么特征? 對(duì)數(shù)函數(shù)的.圖象與性質(zhì): 圖象 性質(zhì) (1)定義域: 。2)值域: 。3)過(guò)定點(diǎn),即當(dāng)時(shí) 。4)上的增函數(shù) 。4)上的減函數(shù) 3、圖象的加深理解: 下面我們來(lái)研究這樣幾個(gè)函數(shù): 我們發(fā)現(xiàn): 與圖象關(guān)于X軸對(duì)稱(chēng);與圖象關(guān)于X軸對(duì)稱(chēng)。 一般地,與圖象關(guān)于X軸對(duì)稱(chēng)。 再通過(guò)圖象的變化(變化的值) 我們發(fā)現(xiàn): 。1)時(shí),函數(shù)為增函數(shù) (2)時(shí),函數(shù)為減函數(shù) 4、練習(xí): (1)如圖:曲線(xiàn)分別為函數(shù)的圖像,試問(wèn)的大小關(guān)系如何? (2)比較下列各組數(shù)中兩個(gè)值的大。 (3)解關(guān)于x的不等式: 思考:(1)比較大。 (2)解關(guān)于x的不等式: 三、小結(jié) 這節(jié)課我們主要介紹了指數(shù)函數(shù)的反函數(shù)——對(duì)數(shù)函數(shù)。并且研究了對(duì)數(shù)函數(shù)的圖象和性質(zhì)。 四、課后作業(yè) 課本P85,習(xí)題2、8、1、3 教學(xué)目標(biāo) 1. 在指數(shù)函數(shù)及反函數(shù)概念的基礎(chǔ)上,使學(xué)生掌握對(duì)數(shù)函數(shù)的概念,能正確描繪對(duì)數(shù)函數(shù)的圖像,掌握對(duì)數(shù)函數(shù)的性質(zhì),并初步應(yīng)用性質(zhì)解決簡(jiǎn)單問(wèn)題. 2. 通過(guò)對(duì)數(shù)函數(shù)的學(xué)習(xí),樹(shù)立相互聯(lián)系,相互轉(zhuǎn)化的觀(guān)點(diǎn),滲透數(shù)形結(jié)合,分類(lèi)討論的思想. 3. 通過(guò)對(duì)數(shù)函數(shù)有關(guān)性質(zhì)的研究,培養(yǎng)學(xué)生觀(guān)察,分析,歸納的思維能力,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性. 教學(xué)重點(diǎn),難點(diǎn) 重點(diǎn)是理解對(duì)數(shù)函數(shù)的定義,掌握?qǐng)D像和性質(zhì). 難點(diǎn)是由對(duì)數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù)的關(guān)系,利用指數(shù)函數(shù)圖像和性質(zhì)得到對(duì)數(shù)函數(shù)的圖像和性質(zhì). 教學(xué)方法 啟發(fā)研討式 教學(xué)用具 投影儀 教學(xué)過(guò)程 一. 引入新課 今天我們一起再來(lái)研究一種常見(jiàn)函數(shù).前面的幾種函數(shù)都是以形式定義的方式給出的,今天我們將從反函數(shù)的角度介紹新的函數(shù). 反函數(shù)的'實(shí)質(zhì)是研究?jī)蓚(gè)函數(shù)的關(guān)系,所以自然我們應(yīng)從大家熟悉的函數(shù)出發(fā),再研究其反函數(shù).這個(gè)熟悉的函數(shù)就是指數(shù)函數(shù). 提問(wèn):什么是指數(shù)函數(shù)?指數(shù)函數(shù)存在反函數(shù)嗎? 由學(xué)生說(shuō)出 是指數(shù)函數(shù),它是存在反函數(shù)的.并由一個(gè)學(xué)生口答求反函數(shù)的過(guò)程: 由 得 .又 的值域?yàn)?, 所求反函數(shù)為 . 那么我們今天就是研究指數(shù)函數(shù)的反函數(shù)-----對(duì)數(shù)函數(shù). 二.對(duì)數(shù)函數(shù)的圖像與性質(zhì) (板書(shū)) 1. 作圖方法 提問(wèn)學(xué)生打算用什么方法來(lái)畫(huà)函數(shù)圖像?學(xué)生應(yīng)能想到利用互為反函數(shù)的兩個(gè)函數(shù)圖像之間的關(guān)系,利用圖像變換法畫(huà)圖.同時(shí)教師也應(yīng)指出用列表描點(diǎn)法也是可以的,讓學(xué)生從中選出一種,最終確定用圖像變換法畫(huà)圖. 由于指數(shù)函數(shù)的圖像按 和 分成兩種不同的類(lèi)型,故對(duì)數(shù)函數(shù)的圖像也應(yīng)以1為分界線(xiàn)分成兩種情況 和 ,并分別以 和 為例畫(huà)圖. 具體操作時(shí),要求學(xué)生做到: (1) 指數(shù)函數(shù) 和 的圖像要盡量準(zhǔn)確(關(guān)鍵點(diǎn)的位置,圖像的變化趨勢(shì)等). (2) 畫(huà)出直線(xiàn) . (3) 的圖像在翻折時(shí)先將特殊點(diǎn) 對(duì)稱(chēng)點(diǎn) 找到,變化趨勢(shì)由靠近 軸對(duì)稱(chēng)為逐漸靠近 軸,而 的圖像在翻折時(shí)可提示學(xué)生分兩段翻折,在 左側(cè)的先翻,然后再翻在 右側(cè)的部分. 學(xué)生在筆記本完成具體操作,教師在學(xué)生完成后將關(guān)鍵步驟在黑板上演示一遍,畫(huà)出和 的圖像.(此時(shí)同底的指數(shù)函數(shù)和對(duì)數(shù)函數(shù)畫(huà)在同一坐標(biāo)系內(nèi))如圖: 2. 草圖. 教師畫(huà)完圖后再利用投影儀將 和 的圖像畫(huà)在同一坐標(biāo)系內(nèi),如圖: 然后提出讓學(xué)生根據(jù)圖像說(shuō)出對(duì)數(shù)函數(shù)的性質(zhì)(要求從幾何與代數(shù)兩個(gè)角度說(shuō)明) 3. 性質(zhì) (1) 定義域: (2) 值域: 由以上兩條可說(shuō)明圖像位于 軸的右側(cè). (3) 截距:令 得 ,即在 軸上的截距為1,與 軸無(wú)交點(diǎn)即以 軸為漸近線(xiàn). (4) 奇偶性:既不是奇函數(shù)也不是偶函數(shù),即它不關(guān)于原點(diǎn)對(duì)稱(chēng),也不關(guān)于 軸對(duì)稱(chēng). (5) 單調(diào)性:與 有關(guān).當(dāng) 時(shí),在 上是增函數(shù).即圖像是上升的 當(dāng) 時(shí),在 上是減函數(shù),即圖像是下降的. 之后可以追問(wèn)學(xué)生有沒(méi)有最大值和最小值,當(dāng)?shù)玫椒穸ù鸢笗r(shí),可以再問(wèn)能否看待何時(shí)函數(shù)值為正?學(xué)生看著圖可以答出應(yīng)有兩種情況: 當(dāng) 時(shí),有 ;當(dāng) 時(shí),有 . 學(xué)生回答后教師可指導(dǎo)學(xué)生巧記這個(gè)結(jié)論的方法:當(dāng)?shù)讛?shù)與真數(shù)在1的同側(cè)時(shí)函數(shù)值為正,當(dāng)?shù)讛?shù)與真數(shù)在1的兩側(cè)時(shí),函數(shù)值為負(fù),并把它當(dāng)作第(6)條性質(zhì)板書(shū)記下來(lái). 最后教師在總結(jié)時(shí),強(qiáng)調(diào)記住性質(zhì)的關(guān)鍵在于要腦中有圖.且應(yīng)將其性質(zhì)與指數(shù)函數(shù)的性質(zhì)對(duì)比記憶.(特別強(qiáng)調(diào)它們單調(diào)性的一致性) 對(duì)圖像和性質(zhì)有了一定的了解后,一起來(lái)看看它們的應(yīng)用. 三.鞏固練習(xí) 練習(xí):若 ,求 的取值范圍. 四.小結(jié) 五.作業(yè) 略 【對(duì)數(shù)函數(shù)教案】相關(guān)文章: 對(duì)數(shù)函數(shù)教學(xué)反思04-02 《對(duì)數(shù)函數(shù)》教學(xué)反思05-12 對(duì)數(shù)與對(duì)數(shù)函數(shù)教學(xué)反思04-21 《對(duì)數(shù)函數(shù)》教學(xué)反思9篇03-31 教案幼兒中班教案02-15 小班教案小班教案03-10 小班美術(shù)教案星空教案06-08 小班教案社會(huì)教案10-11 大班健康教案食物的旅行教案06-08對(duì)數(shù)函數(shù)教案12
對(duì)數(shù)函數(shù)教案13
對(duì)數(shù)函數(shù)教案14
對(duì)數(shù)函數(shù)教案15