丁香花无码AV在线,欧美日韩国产色,年轻人手机在线免费视频,伊人成人在线,可以直接免费观看的av网站,日本三级香港三级人妇99,亚洲免费二区

二次根式教案

時間:2023-04-21 15:57:50 教案 我要投稿

二次根式教案集合8篇

  在教學(xué)工作者實際的教學(xué)活動中,就有可能用到教案,教案有利于教學(xué)水平的提高,有助于教研活動的開展。我們應(yīng)該怎么寫教案呢?下面是小編為大家收集的二次根式教案8篇,歡迎閱讀,希望大家能夠喜歡。

二次根式教案集合8篇

二次根式教案 篇1

  【1】二次根式的加減教案

  教材分析:

  本節(jié)內(nèi)容出自九年級數(shù)學(xué)上冊第二十一章第三節(jié)的第一課時,本節(jié)在研究最簡二次根式和二次根式的乘除的基礎(chǔ)上,來學(xué)習(xí)二次根式的加減運(yùn)算法則和進(jìn)一步完善二次根式的化簡。本小節(jié)重點是二次根式的加減運(yùn)算,教材從一個實際問題引出二次根式的加減運(yùn)算,使學(xué)生感到研究二次根式的加減運(yùn)算是解決實際問題的需要。通過探索二次根式加減運(yùn)算,并用其解決一些實際問題,來提高我們用數(shù)學(xué)解決實際問題的意識和能力。另外,通過本小節(jié)學(xué)習(xí)為后面學(xué)生熟練進(jìn)行二次根式的加減運(yùn)算以及加、減、乘、除混合運(yùn)算打下了鋪墊。

  學(xué)生分析:

  本節(jié)課的內(nèi)容是知識的延續(xù)和創(chuàng)新,學(xué)生積極主動的投入討論、交流、建構(gòu)中,自主探索、動手操作、協(xié)作交流,全班學(xué)生具有較扎實的知識和創(chuàng)新能力,通過自學(xué)、小組討論大部分學(xué)生能夠達(dá)到教學(xué)目標(biāo),少部分學(xué)生有困難,基礎(chǔ)差、自學(xué)能力差,因此要提供賞識性評價教學(xué)策略,給予個別關(guān)照、心理暗示以及適當(dāng)?shù)木窦,克服自卑心理,讓他們逐步樹立自尊心與自信心,從而完成自己的學(xué)習(xí)任務(wù)。

  設(shè)計理念:

  新課程有效課堂教學(xué)明確倡導(dǎo),學(xué)生是學(xué)習(xí)的主人,在學(xué)生自學(xué)文本的基礎(chǔ)上動手實踐、自主探究、合作交流,來倡導(dǎo)新的學(xué)習(xí)觀,讓他們完成二次根式加減知識研究。教師從過去知識的傳授者轉(zhuǎn)變?yōu)閷W(xué)生的自主性、探究性、合作性學(xué)習(xí)活動的設(shè)計者和組織者,與學(xué)生零距離接觸共同探究。在教學(xué)過程中教師設(shè)置開放的、面向?qū)嶋H的、富有挑戰(zhàn)性的問題情境,使學(xué)生在嘗試、探索、思考、交流與合作中培養(yǎng)分析、歸納、總結(jié)的能力,把“要我學(xué)”變成“我要學(xué)”,通過開放式命題,嘗試從不同角度尋求解決問題的方法,養(yǎng)成良好的學(xué)習(xí)習(xí)慣,掌握學(xué)習(xí)策略,并根據(jù)活動中示范和指導(dǎo)培養(yǎng)學(xué)生大膽闡述并討論觀點,說明所獲討論的有效性,并對推論進(jìn)行評價。從而營造一個接納的、支持的、寬容的良好氛圍進(jìn)行學(xué)習(xí)。

  教學(xué)目標(biāo)知識與技能目標(biāo):

  會化簡二次根式,了解同類二次根式的概念,會進(jìn)行簡單的二次根式的加減法;通過加減運(yùn)算解決生活的實際問題。

  過程與方法目標(biāo):

  通過類比整式加減法運(yùn)算體驗二次根式加減法運(yùn)算的過程;學(xué)生經(jīng)歷由實際問題引入數(shù)學(xué)問題的.過程,發(fā)展學(xué)生的抽象概括能力。

  情感態(tài)度與價值觀:

  通過對二次根式加減法的探究,激發(fā)學(xué)生的探索熱情,讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過程中來,使他們體驗到成功的樂趣.

  重點、難點:重點:

  合并被開放數(shù)相同的同類二次根式,會進(jìn)行簡單的二次根式的加減法。

  難點:

  二次根式加減法的實際應(yīng)用。

  關(guān)鍵問題 :

  了解同類二次根式的概念,合并同類二次根式,會進(jìn)行二次根式的加減法。

  教學(xué)方法:.

  1. 引導(dǎo)發(fā)現(xiàn)法:在教師的啟發(fā)引導(dǎo)下,鼓勵學(xué)生積極參與,與實際問題相結(jié)合,采用“問題—探索—發(fā)現(xiàn)”的研究模式,讓學(xué)生自主探索,合作學(xué)習(xí),歸納結(jié)論,掌握規(guī)律。

  2. 類比法:由實際問題導(dǎo)入二次根式加減運(yùn)算;類比合并同類項合并同類二次根式。

  3.嘗試訓(xùn)練法:通過學(xué)生嘗試,教師針對個別問題進(jìn)行點撥指導(dǎo),實現(xiàn)全優(yōu)的教育效果。

  【2】二次根式的加減教案

  教學(xué)目標(biāo):

  1.知識目標(biāo):二次根式的加減法運(yùn)算

  2.能力目標(biāo):能熟練進(jìn)行二次根式的加減運(yùn)算,能通過二次根式的加減法運(yùn)算解決實際問題。

  3.情感態(tài)度:培養(yǎng)學(xué)生善于思考,一絲不茍的科學(xué)精神。

  重難點分析:

  重點:能熟練進(jìn)行二次根式的加減運(yùn)算。

  難點:正確合并被開方數(shù)相同的二次根式,二次根式加減法的實際應(yīng)用。

  教學(xué)關(guān)鍵:通過復(fù)習(xí)舊知識,運(yùn)用類比思想方法,達(dá)到溫故知新的目的;運(yùn)用創(chuàng)設(shè)問題激發(fā)學(xué)生求知欲;通過學(xué)生全面參與學(xué)習(xí)(分層次要求),達(dá)到每個學(xué)生在學(xué)習(xí)數(shù)學(xué)上有不同的發(fā)展。

  運(yùn)用教具:小黑板等。

  教學(xué)過程:

問題與情景

師生活動

設(shè)計目的

活動一:

情景引入,導(dǎo)學(xué)展示

1.把下列二次根式化為最簡二次根式: , ; , , 。上述兩組二次根式,有什么特點?

2.現(xiàn)有一塊長7.5dm、寬5dm的木板,能否采用如教科書圖21.3-所示的方式,在這塊木板上截出兩個面積分別是8dm 和18dm 的正方形木板?

這道題是舊知識的回顧,老師可以找同學(xué)直接回答。對于問題,老師要關(guān)注:學(xué)生是否能熟練得到正確答案。 教師傾聽學(xué)生的交流,指導(dǎo)學(xué)生探究。

問:什么樣的二次根式能進(jìn)行加減運(yùn)算,運(yùn)算到那一步為止。

由此也可以看到二次根式的加減只有通過找出被開方數(shù)相同的二次根式的途徑,才能進(jìn)行加減。

加強(qiáng)新舊知識的聯(lián)系。通過觀察,初步認(rèn)識同類二次根式。

引出二次根式加減法則。

3. A、B層同學(xué)自主學(xué)習(xí)15頁例1、例2、例3,C層同學(xué)至少完成例1、例2的學(xué)習(xí)。

例1.計算:

(1) ;

(2) - ;

例2. 計算:

1)

2)

例3.要焊接一個如教科書圖21.3—2所示的鋼架,大約需要多少米鋼材(精確到0.1米)?

活動二:分層練習(xí),合作互助

1.下列計算是否正確?為什么?

(1)

(2) ;

(3) 。

2.計算:

(1) ;

(2)

(3)

(4)

3.(見課本16頁)

補(bǔ)充:

活動三:分層檢測,反饋小結(jié)

教材17頁習(xí)題:

A層、 B層:2、3.

C層1、2.

小結(jié):

這節(jié)課你學(xué)到了什么知識?你有什么收獲?

作業(yè):課堂練習(xí)冊第5、6頁。

自學(xué)的同時抽查部分同學(xué)在黑板上板書計算過程。抽2名C層同學(xué)在黑板上完成例1板書過程,學(xué)生在計算時若出現(xiàn)錯誤,抽2名B層同學(xué)訂正。抽2名B層同學(xué)在黑板上完成例2板書過程,若出現(xiàn)錯誤,再抽2名A層同學(xué)訂正。抽1名A層同學(xué)在黑板上完成例3板書過程,并做適當(dāng)?shù)姆治鲋v解。

此題是聯(lián)系實際的題目,需要學(xué)生先列式,再計算。并將結(jié)果精確到0.1 m, 學(xué)生考慮問題要全面,不能漏掉任何一段鋼材。

老師提示:

1)解決問題的方案是否得當(dāng);2)考慮的問題是否全面。3)計算是否準(zhǔn)確。

A層同學(xué)完成16頁練習(xí)1、2、3;B層同學(xué)完成練習(xí)1、2,可選做第3題;C層同學(xué)盡量完成練習(xí)1、2。多數(shù)同學(xué)完成后,讓學(xué)生在小組內(nèi)互相檢查,有問題時共同分析矯正或請教老師。也可以抽查部分同學(xué)。例如:抽3名C層同學(xué)口答練習(xí)1;抽4名B層或C層同學(xué)在黑板上板書練習(xí)第2題;抽1名A層或B層同學(xué)在黑板上板書練習(xí)第3題后再分析講解。

點撥:1)對 的化簡是否正確;2)當(dāng)根式中出現(xiàn)小數(shù)、分?jǐn)?shù)、字母時,是否能正確處理;

3)運(yùn)算法則的運(yùn)用是否正確

先測試,再小組內(nèi)互批,查找問題。學(xué)生反思本節(jié)課學(xué)到的知識,談自己的感受。

小結(jié)時教師要關(guān)注:

1)學(xué)生是否抓住本課的重點;

2)對于常見錯誤的認(rèn)識。

把學(xué)習(xí)目標(biāo)由高到低分為A、B、C三個層次,教學(xué)中做到分層要求。

學(xué)生學(xué)習(xí)經(jīng)歷由淺到深的過程,可以提高學(xué)生能力,同時有利于激發(fā)學(xué)生的探索知識的欲望。

二次根式的加減運(yùn)算融入實際問題中去,提高了學(xué)生的學(xué)習(xí)興趣和對數(shù)學(xué)知識的.應(yīng)用意識和能力。

小組成員互相檢查學(xué)生對于新的知識掌握的情況,鞏固學(xué)生剛掌握的知識能力。達(dá)到共同把關(guān)、合作互助的目的。

培養(yǎng)學(xué)生的計算的準(zhǔn)確性,以培養(yǎng)學(xué)生科學(xué)的精神。

對課堂的問題及時反饋,使學(xué)生熟練掌握新知識。

每個學(xué)生對于知識的理解程度不同,學(xué)生回答時教師要多鼓勵學(xué)生。

二次根式教案 篇2

  一、教學(xué)目標(biāo)

  1.了解二次根式的意義;

  2. 掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;

  3. 掌握二次根式的性質(zhì) 和 ,并能靈活應(yīng)用;

  4.通過二次根式的計算培養(yǎng)學(xué)生的邏輯思維能力;

  5. 通過二次根式性質(zhì) 和 的介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美.

  二、教學(xué)重點和難點

  重點:(1)二次根的意義;(2)二次根式中字母的取值范圍.

  難點:確定二次根式中字母的取值范圍.

  三、教學(xué)方法

  啟發(fā)式、講練結(jié)合.

  四、教學(xué)過程

  (一)復(fù)習(xí)提問

  1.什么叫平方根、算術(shù)平方根?

  2.說出下列各式的意義,并計算:

  通過練習(xí)使學(xué)生進(jìn)一步理解平方根、算術(shù)平方根的概念.

  觀察上面幾個式子的特點,引導(dǎo)學(xué)生總結(jié)它們的被平方數(shù)都大于或等于零,其中 ,

  表示的是算術(shù)平方根.

  (二)引入新課

  我們已遇到的這樣的式子是我們這節(jié)課研究的內(nèi)容,引出:

  新課:二次根式

  定義: 式子 叫做二次根式.

  對于 請同學(xué)們討論論應(yīng)注意的問題,引導(dǎo)學(xué)生總結(jié):

  (1)式子 只有在條件a0時才叫二次根式, 是二次根式嗎? 呢?

  若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分.

  (2) 是二次根式,而 ,提問學(xué)生:2是二次根式嗎?顯然不是,因此二次

  根式指的是某種式子的外在形態(tài).請學(xué)生舉出幾個二次根式的`例子,并說明為什么是二次根式.下面例題根據(jù)二次根式定義,由學(xué)生分析、回答.

  例1 當(dāng)a為實數(shù)時,下列各式中哪些是二次根式?

  分析: , , , 、 、 、 四個是二次根式. 因為a是實數(shù)時,a+10、a2-1不能保證是非負(fù)數(shù),即a+10、a2-1可以是負(fù)數(shù)(如當(dāng)a-10時,a+10又如當(dāng)0

  例2 x是怎樣的實數(shù)時,式子 在實數(shù)范圍有意義?

  解:略.

  說明:這個問題實質(zhì)上是在x是什么數(shù)時,x-3是非負(fù)數(shù),式子 有意義.

  例3 當(dāng)字母取何值時,下列各式為二次根式:

  (1) (2) (3) (4)

  分析:由二次根式的定義 ,被開方數(shù)必須是非負(fù)數(shù),把問題轉(zhuǎn)化為解不等式.

  解:(1)∵a、b為任意實數(shù)時,都有a2+b20,當(dāng)a、b為任意實數(shù)時, 是二次根式.

  (2)-3x0,x0,即x0時, 是二次根式.

  (3) ,且x0,x0,當(dāng)x0時, 是二次根式.

  (4) ,即 ,故x-20且x-20, x2.當(dāng)x2時, 是二次根式.

  例4 下列各式是二次根式,求式子中的字母所滿足的條件:

  (1) ; (2) ; (3) ; (4)

  分析:這個例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進(jìn)一步鞏固二次根式的定義,.即: 只有在條件a0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零.

  解:(1)由2a+30,得 .

  (2)由 ,得3a-10,解得 .

  (3)由于x取任何實數(shù)時都有|x|0,因此,|x|+0.10,于是 ,式子 是二次根式. 所以所求字母x的取值范圍是全體實數(shù).

  (4)由-b20得b20,只有當(dāng)b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0.

  (三)小結(jié)(引導(dǎo)學(xué)生做出本節(jié)課學(xué)習(xí)內(nèi)容小結(jié))

  1.式子 叫做二次根式,實際上是一個非負(fù)的實數(shù)a的算術(shù)平方根的表達(dá)式.

  2.式子中,被開方數(shù)(式)必須大于等于零.

  (四)練習(xí)和作業(yè)

  練習(xí):

  1.判斷下列各式是否是二次根式

  分析:(2) 中, , 是二次根式;(5)是二次根式. 因為x是實數(shù)時,x、x+1不能保證是非負(fù)數(shù),即x、x+1可以是負(fù)數(shù)(如x0時,又如當(dāng)x-1時=,因此(1)(3)(4)不是二次根式,(6)無意義.

  2.a是怎樣的實數(shù)時,下列各式在實數(shù)范圍內(nèi)有意義?

  五、作業(yè)

  教材P.172習(xí)題11.1;A組1;B組1.

  六、板書設(shè)計

二次根式教案 篇3

  教學(xué)目的

  1.使學(xué)生掌握最簡二次根式的定義,并會應(yīng)用此定義判斷一個根式是否為最簡二次根式;

  2.會運(yùn)用積和商的算術(shù)平方根的性質(zhì),把一個二次根式化為最簡二次根式。

  教學(xué)重點

  最簡二次根式的定義。

  教學(xué)難點

  一個二次根式化成最簡二次根式的方法。

  教學(xué)過程

  一、復(fù)習(xí)引入

  1.把下列各根式化簡,并說出化簡的根據(jù):

  2.引導(dǎo)學(xué)生觀察考慮:

  化簡前后的根式,被開方數(shù)有什么不同?

  化簡前的被開方數(shù)有分?jǐn)?shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。

  3.啟發(fā)學(xué)生回答:

  二次根式,請同學(xué)們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?

  二、講解新課

  1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡二次根式定義:

  滿足下列兩個條件的二次根式叫做最簡二次根式:

  (1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

  (2)被開方數(shù)中不含能開得盡的因數(shù)或因式。

  最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。

  2.練習(xí):

  下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:

  3.例題:

  例1 把下列各式化成最簡二次根式:

  例2 把下列各式化成最簡二次根式:

  4.總結(jié)

  把二次根式化成最簡二次根式的根據(jù)是什么?應(yīng)用了什么方法?

  當(dāng)被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的.因數(shù)或因式用它的算術(shù)平方根代替移到根號外面去。

  當(dāng)被開方數(shù)是分?jǐn)?shù)或分式時,根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。

  此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。

  三、鞏固練習(xí)

  1.把下列各式化成最簡二次根式:

  2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。

二次根式教案 篇4

  活動1、提出問題

  一個運(yùn)動場要修兩塊長方形草坪,第一塊草坪的長是10米,寬是米,第二塊草坪的長是20米,寬也是米。你能告訴運(yùn)動場的負(fù)責(zé)人要準(zhǔn)備多少面積的草皮嗎?

  問題:10+20是什么運(yùn)算?

  活動2、探究活動

  下列3個小題怎樣計算?

  問題:1)-還能繼續(xù)往下合并嗎?

  2)看來二次根式有的能合并,有的不能合并,通過對以上幾個題的觀察,你能說說什么樣的二次根式能合并,什么樣的不能合并嗎?

  二次根式加減時,先將二次根式化簡成最簡二次根式后,再將被開方數(shù)相同的進(jìn)行合并。

  活動3

  練習(xí)1指出下列每組的`二次根式中,哪些是可以合并的二次根式?(字母均為正數(shù))

  創(chuàng)設(shè)問題情景,引起學(xué)生思考。

  學(xué)生回答:這個運(yùn)動場要準(zhǔn)備(10+20)平方米的草皮。

  教師提問:學(xué)生思考并回答教師出示課題并說明今天我們就共同來研究該如何進(jìn)行二次根式的加減法運(yùn)算。

  我們可以利用已學(xué)知識或已有經(jīng)驗來分組討論、交流,看看+到底等于什么?小組展示討論結(jié)果。

  教師引導(dǎo)驗證:

  ①設(shè)=,類比合并同類項或面積法;

 、趯W(xué)生思考,得出先化簡,再合并的解題思路

  ③先化簡,再合并

  學(xué)生觀察并歸納:二次根式化為最簡二次根式后,被開方數(shù)相同的能合并。

  教師巡視、指導(dǎo),學(xué)生完成、交流,師生評價。

  提醒學(xué)生注意先化簡成最簡二次根式后再判斷。

二次根式教案 篇5

  1.請同學(xué)們回憶(≥0,b≥0)是如何得到的?

  2.學(xué)生觀察下面的例子,并計算:

  由學(xué)生總結(jié)上面兩個式的關(guān)系得:

  類似地,請每個同學(xué)再舉一個例子,然后由這些特殊的例子,得出:

 。ā0,b0)

  使學(xué)生回憶起二次根式乘法的運(yùn)算方法的推導(dǎo)過程.

  類似地,請每個同學(xué)再舉一個例子,

  請學(xué)生們思考為什么b的取值范圍變小了?

  與學(xué)生一起寫清解題過程,提醒他們被開方式一定要開盡.

  對比二次根式的乘法推導(dǎo)出除法的運(yùn)算方法

  增強(qiáng)學(xué)生的自信心,并從一開始就使他們參與到推導(dǎo)過程中來.

  對學(xué)生進(jìn)一步強(qiáng)化被開方數(shù)的取值范圍,以及分母不能為零.

  強(qiáng)化學(xué)生的解題格式一定要標(biāo)準(zhǔn).

  教學(xué)過程設(shè)計

  問題與情境師生行為設(shè)計意圖

  活動二自我檢測

  活動三挑戰(zhàn)逆向思維

  把反過來,就得到

 。ā0,b0)

  利用它就可以進(jìn)行二次根式的化簡.

  例2化簡:

 。1)

 。2)(b≥0).

  解:(1)(2)練習(xí)2化簡:

  (1)(2)活動四談?wù)勀愕氖斋@

  1.商的算術(shù)平方根的性質(zhì)(注意公式成立的條件).

  2.會利用商的算術(shù)平方根的性質(zhì)進(jìn)行簡單的二次根式的化簡.

  找四名學(xué)生上黑板板演,其余學(xué)生在練習(xí)本上計算,然后再找學(xué)生指出不足.

  二次根式的.乘法公式可以逆用,那除法公式可以逆用嗎?

  找學(xué)生口述解題過程,教師將過程寫在黑板上.

  請學(xué)生仿照例題自己解決這兩道小題,組長檢查本組的學(xué)習(xí)情況.

  請學(xué)生自己談收獲,并總結(jié)本節(jié)課的主要內(nèi)容.

  為了更快地發(fā)現(xiàn)學(xué)生的錯誤之處,以便糾正.

  此處進(jìn)行簡單處理是因為有二次根式的乘法公式的逆用作基礎(chǔ)理解并不難.

  讓學(xué)困生在自己做題時有一個參照.

  充分發(fā)揮組長的作用,盡可能在課堂上將問題解決.

二次根式教案 篇6

  【 學(xué)習(xí)目標(biāo) 】

  1、知識與技能:了解二次根式的概念,能求根號內(nèi)字母范圍,理解二次根式的雙重非負(fù)性,并能應(yīng)用它解決相關(guān)問題。

  2、過程與方法:進(jìn)一步體會分類討論的數(shù)學(xué)思想。

  3、情感、態(tài)度與價值觀:通過小組合作學(xué)習(xí),體驗在合作探索中學(xué)習(xí)數(shù)學(xué)的樂趣。

  【 學(xué)習(xí)重難點 】

  1、重點:準(zhǔn)確理解二次根式的概念,并能進(jìn)行簡單的計算。

  2、難點:準(zhǔn)確理解二次根式的雙重非負(fù)性。

  【 學(xué)習(xí)內(nèi)容 】課本第2— 3頁

  【 學(xué)習(xí)流程 】

  一、 課前準(zhǔn)備(預(yù)習(xí)學(xué)案見附件1)

  學(xué)生在家中認(rèn)真閱讀理解課本中相關(guān)內(nèi)容的.知識,并根據(jù)自己的理解完成預(yù)習(xí)學(xué)案。

  二、 課堂教學(xué)

  (一)合作學(xué)習(xí)階段。

  教師出示課堂教學(xué)目標(biāo)及引導(dǎo)材料,各學(xué)習(xí)小組結(jié)合本節(jié)課學(xué)習(xí)目標(biāo),根據(jù)課堂引導(dǎo)材料中得內(nèi)容,以小組合作的形式,組內(nèi)交流、總結(jié),并記錄合作學(xué)習(xí)中碰到的問題。組內(nèi)各成員根據(jù)課堂引導(dǎo)材料的要求在小組合作的前提下認(rèn)真完成課堂引導(dǎo)材料。教師在巡視中觀察各小組合作學(xué)習(xí)的情況,并進(jìn)行及時的引導(dǎo)、點撥,對普遍存在的問題做好記錄。

  (二)集體講授階段。(15分鐘左右)

  1. 各小組推選代表依次對課堂引導(dǎo)材料中的問題進(jìn)行解答,不足的本組成員可以補(bǔ)充。

  2. 教師對合作學(xué)習(xí)中存在的普遍的不能解決的問題進(jìn)行集體講解。

  3. 各小組提出本組學(xué)習(xí)中存在的困惑,并請其他小組幫助解答,解答不了的由教師進(jìn)行解答。

  (三)當(dāng)堂檢測階段

  為了及時了解本節(jié)課學(xué)生的學(xué)習(xí)效果,及對本節(jié)課進(jìn)行及時的鞏固,對學(xué)生進(jìn)行當(dāng)堂檢測,測試完試卷上交。

  (注:合作學(xué)習(xí)階段與集體講授階段可以根據(jù)授課內(nèi)容進(jìn)行適當(dāng)調(diào)整次序或交叉進(jìn)行)

  三、 課后作業(yè)(課后作業(yè)見附件2)

  教師發(fā)放根據(jù)本節(jié)課所學(xué)內(nèi)容制定的針對性作業(yè),以幫助學(xué)生進(jìn)一步鞏固提高課堂所學(xué)。

  四、板書設(shè)計

  課題:二次根式(1)

  二次根式概念 例題 例題

  二次根式性質(zhì)

  反思:

二次根式教案 篇7

  一、教學(xué)目標(biāo)

  1.理解分母有理化與除法的關(guān)系.

  2.掌握二次根式的分母有理化.

  3.通過二次根式的分母有理化,培養(yǎng)學(xué)生的運(yùn)算能力.

  4.通過學(xué)習(xí)分母有理化與除法的關(guān)系,向?qū)W生滲透轉(zhuǎn)化的數(shù)學(xué)思想

  二、教學(xué)設(shè)計

  小結(jié)、歸納、提高

  三、重點、難點解決辦法

  1.教學(xué)重點:分母有理化.

  2.教學(xué)難點:分母有理化的技巧.

  四、課時安排

  1課時

  五、教具學(xué)具準(zhǔn)備

  投影儀、膠片、多媒體

  六、師生互動活動設(shè)計

  復(fù)習(xí)小結(jié),歸納整理,應(yīng)用提高,以學(xué)生活動為主

  七、教學(xué)過程

  【復(fù)習(xí)提問】

  二次根式混合運(yùn)算的步驟、運(yùn)算順序、互為有理化因式.

  例1 說出下列算式的運(yùn)算步驟和順序:

 。1) (先乘除,后加減).

  (2) (有括號,先去括號;不宜先進(jìn)行括號內(nèi)的運(yùn)算).

 。3)辨別有理化因式:

  有理化因式: 與 , 與 , 與 …

  不是有理化因式: 與 , 與 …

  化簡一個式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的'方法(依據(jù)分式的基本性質(zhì)).

  例如:等式子的化簡,如果分母是兩個二次根式的和,應(yīng)該怎樣化簡?

  引入新課題.

  【引入新課】

  化簡式子 ,乘以什么樣的式子,分母中的根式符號可去掉,結(jié)論是分子與分母要同乘以 的有理化因式,而這個式子就是 ,從而可將式子化簡.

  例2 把下列各式的分母有理化:

  (1) ; (2) ; (3)

  解:略.

  注:通過例題的講解,使學(xué)生理解和掌握化簡的步驟、關(guān)鍵問題、化簡的依據(jù).式子的化簡,若分子與分母可分解因式,則可先分解因式,再約分,使化簡變得簡單.

二次根式教案 篇8

  一、內(nèi)容和內(nèi)容解析

  1.內(nèi)容

  二次根式的除法法則及其逆用,最簡二次根式的概念。

  2.內(nèi)容解析

  二次根式除法法則及商的算術(shù)平方根的探究,最簡二次根式的提出,為二次根式的運(yùn)算指明了方向,學(xué)習(xí)了除法法則后,就有比較豐富的運(yùn)算法則和公式依據(jù),將一個二次根式化成最簡二次根式,是加減運(yùn)算的基礎(chǔ).

  基于以上分析,確定本節(jié)課的教學(xué)重點:二次根式的`除法法則和商的算術(shù)平方根的性質(zhì),最簡二次根式.

  二、目標(biāo)和目標(biāo)解析

  1.教學(xué)目標(biāo)

  (1)利用歸納類比的方法得出二次根式的除法法則和商的算術(shù)平方根的性質(zhì);

  (2)會進(jìn)行簡單的二次根式的除法運(yùn)算;

  (3) 理解最簡二次根式的概念.

  2.目標(biāo)解析

  (1)學(xué)生能通過運(yùn)算,類比二次根式的乘法法則,發(fā)現(xiàn)并描述二次根式的除法法則;

  (2)學(xué)生能理解除法法則逆用的意義,結(jié)合二次根式的概念、性質(zhì)、乘除法法則,對簡單的二次根式進(jìn)行運(yùn)算.

  (3)通過觀察二次根式的運(yùn)算結(jié)果,理解最簡二次根式的特征,能將二次根式的運(yùn)算結(jié)果化為最簡二次根式.

  三、教學(xué)問題診斷分析

  本節(jié)內(nèi)容主要是在做二次根式的除法運(yùn)算時,分母含根號的處理方式上,學(xué)生可能會出現(xiàn)困難或容易失誤,在除法運(yùn)算中,可以先計算后利用商的算術(shù)平方根的性質(zhì)來進(jìn)行,也可以先利用分式的性質(zhì),去掉分母中的根號,再結(jié)合乘法法則和積的算術(shù)平方根的性質(zhì)來進(jìn)行.二次根式的除法與分式的運(yùn)算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡化運(yùn)算.教學(xué)中不能只是列舉題型,應(yīng)以各級各類習(xí)題為載體,引導(dǎo)學(xué)生把握運(yùn)算過程,估計運(yùn)算結(jié)果,明確運(yùn)算方向.

  本節(jié)課的教學(xué)難點為:二次根式的除法法則與商的算術(shù)平方根的性質(zhì)之間的關(guān)系和應(yīng)用.

  四、教學(xué)過程設(shè)計

  1.復(fù)習(xí)提問,探究規(guī)律

  問題1 二次根式的乘法法則是什么內(nèi)容?化簡二次根式的一般步驟怎樣?

  師生活動 學(xué)生回答。

  【設(shè)計意圖】讓學(xué)生回憶探究乘法法則的過程,類比該過程,學(xué)生可以探究除法法則.

  五、目標(biāo)檢測設(shè)計

【二次根式教案】相關(guān)文章:

二次根式教案四篇07-17

【精選】二次根式教案三篇08-05

精選二次根式教案4篇08-16

精選二次根式教案3篇08-08

有關(guān)二次根式教案三篇02-03

二次根式教案合集7篇04-10

實用的二次根式教案三篇04-11

二次根式教案匯總7篇04-04

二次根式教案匯編六篇04-04

二次根式教案范文10篇04-05