丁香花无码AV在线,欧美日韩国产色,年轻人手机在线免费视频,伊人成人在线,可以直接免费观看的av网站,日本三级香港三级人妇99,亚洲免费二区

《圓錐的體積》教案

時間:2024-08-12 10:53:55 教案 我要投稿

《圓錐的體積》教案

  作為一名辛苦耕耘的教育工作者,就難以避免地要準(zhǔn)備教案,編寫教案有利于我們準(zhǔn)確把握教材的重點(diǎn)與難點(diǎn),進(jìn)而選擇恰當(dāng)?shù)慕虒W(xué)方法。寫教案需要注意哪些格式呢?下面是小編為大家整理的《圓錐的體積》教案,僅供參考,希望能夠幫助到大家。

《圓錐的體積》教案

《圓錐的體積》教案1

  教學(xué)目標(biāo):

  1、通過動手操作實(shí)驗(yàn),推導(dǎo)出圓錐體體積的計(jì)算公式。

  2、理解并掌握體積公式,能運(yùn)用公式求圓錐的體積,并會解決簡單的實(shí)際問題。

  3、通過學(xué)生動腦、動手,培養(yǎng)學(xué)生的觀察、分析的綜合能力。

  教具準(zhǔn)備:等底等高的圓柱體和圓錐體5套,大小不同的圓柱體和圓錐體5套、水槽5個,以及多媒體輔助教學(xué)課件。

  教學(xué)過程設(shè)計(jì):

  一、復(fù)習(xí)舊知,做好鋪墊。

  1、認(rèn)識圓柱(課件演示),并說出怎樣計(jì)算圓柱的體積?(屏幕出示:圓柱體的體積=底面積×高)

  2、口算下列圓柱的體積。

  (1)底面積是5平方厘米,高 6 厘米,體積 = ?

  (2)底面半徑是 2 分米,高10分米,體積 = ?

  (3)底面直徑是 6 分米,高10分米,體積 = ?

  3、認(rèn)識圓錐(課件演示),并說出有什么特征?

  二、溝通知識、探索新知。

  教師導(dǎo)入:同學(xué)們,我們已經(jīng)認(rèn)識了圓錐,掌握了它的特征,但是,對于圓錐的學(xué)習(xí)我們不能只停留在認(rèn)識上,有關(guān)圓錐的知識還有很多有待于我們?nèi)W(xué)習(xí)、去探究。這節(jié)課我們就來研究“圓錐的體積”。(板書課題)

  1、探討圓錐的體積計(jì)算公式。

  教師:怎樣推導(dǎo)圓錐的.體積計(jì)算公式呢?在回答這個問題之前,請同學(xué)們先想一想,我們是怎樣知道圓柱體積計(jì)算公式的?

  學(xué)生回答,教師板書:

  圓柱------(轉(zhuǎn)化)------長方體

  圓柱體積計(jì)算公式--------(推導(dǎo))長方體體積計(jì)算公式

  教師:借鑒這種方法,為了我們研究圓錐體體積的方便,每個組都準(zhǔn)備了一個圓柱體和一個圓錐體。你們小組比比看,這兩個形體有什么相同的地方?學(xué)生操作比較后,再用課件演示。

  (1)提問學(xué)生:你發(fā)現(xiàn)到什么?(圓柱和圓錐的底和高有什么關(guān)系?)

  (學(xué)生得出:底面積相等,高也相等。)

  教師:底面積相等,高也相等,用數(shù)學(xué)語言說就叫“等底等高”。

  (板書:等底等高)

  (2)為什么?既然這兩個形體是等底等高的,那么我們就跟求圓柱體體積一樣,就用“底面積×高”來求圓錐體體積行不行?

  (不行,因?yàn)閳A錐體的體積小)

  教師:(把圓錐體套在透明的圓柱體里)是啊,圓錐體的體積小,那你估計(jì)一下這兩個形體的體積大小有什么樣的倍數(shù)關(guān)系?(指名發(fā)言)

  用水和圓柱體、圓錐體做實(shí)驗(yàn)。怎樣做這個實(shí)驗(yàn)由小組同學(xué)自己商量,但最后要向同學(xué)們匯報(bào),你們組做實(shí)驗(yàn)的圓柱體和圓錐體在體積大小上有什么樣的倍數(shù)關(guān)系。

  (3)學(xué)生分組做實(shí)驗(yàn),并借助課件演示。

  (教師深入小組中了解活動情況,對個別小組予以適當(dāng)?shù)膸椭?

  a、誰來匯報(bào)一下,你們組是怎樣做實(shí)驗(yàn)的?

  b、你們做實(shí)驗(yàn)的圓柱體和圓錐體在體積大小上發(fā)現(xiàn)有什么倍數(shù)關(guān)系?

  (學(xué)生發(fā)言:圓柱體的體積是圓錐體體積的3倍)

  教師:同學(xué)們得出這個結(jié)論非常重要,其他組也是這樣的嗎?

  學(xué)生回答后,教師用教學(xué)課件演示實(shí)驗(yàn)的全過程,并啟發(fā)學(xué)生在小組內(nèi)有條理地表述圓錐體體積計(jì)算公式的推導(dǎo)過程。

  (板書圓錐體體積計(jì)算公式)

  教師:我們學(xué)過用字母表示數(shù),誰來把這個公式用字母表示一下?(指名發(fā)言,板書)

  (4)學(xué)生操作:出示另外一組大小不同的圓柱體和圓錐體進(jìn)行體積大小的比較,通過比較你發(fā)現(xiàn)什么?

  學(xué)生回答后,教師整理歸納:不是任何一個圓錐體的體積都是任何一個圓柱體體積的 。(教師拿起一個小圓錐、一個大圓柱)如果老師在這個大圓錐體里裝滿了水,往這個小圓柱體里倒,需要倒三次才能倒?jié)M嗎?(不需要)

  為什么你們做實(shí)驗(yàn)的圓錐體里裝滿了水往圓柱體里倒,要倒三次才能倒?jié)M呢?(因?yàn)槭堑鹊椎雀叩膱A柱體和圓錐體。)

  (教師給體積公式與“等底等高”四個字上連線。)

  進(jìn)一步完善體積計(jì)算公式:

  圓錐的體積=等底等高的圓柱體體積×1/3

  =底面積 × 高×1/3

  V = 1/3Sh

  教師:現(xiàn)在我們得到的這個結(jié)論就更完整了。(指名反復(fù)敘述公式。)

  課件出示:

  想一想,討論一下:?

  (1)通過剛才的實(shí)驗(yàn),你發(fā)現(xiàn)了什么?

  (2)要求圓錐的體積必須知道什么?

  學(xué)生后討論回答。

  三、 應(yīng)用求體積、解決問題。

  1、口答。

  (1)有一個圓柱的體積是27立方分米,與它等底等高的圓錐體積是多少?

  (2)有一個圓錐的體積是9立方分米,與它等底等高的圓柱體積是多少?

  2、出示例題,學(xué)生讀題,理解題意,自己解決問題。

  例1、一個圓錐形的零件,底面積是19平方厘米,高是12厘米,這個零件的體積是多少?

  a、 學(xué)生完成后,進(jìn)行小組交流。

  b 、 你是怎樣想的和怎樣解決問題的。(提問學(xué)生多人)

  c 、 教師板書:

  1/3×19×12=76(立方厘米)

  答:它的體積是76立方厘米

  3 、練習(xí)題。

  一個圓錐體,半徑為6cm,高為18cm。體積是多少?(學(xué)生在黑板上只列式,反饋。)

  我們已經(jīng)學(xué)會了求圓錐體的體積,現(xiàn)在我們來解決有關(guān)圓錐體體積的問題。

  4、出示例2:要求學(xué)生自己讀題,理解題意。

  在打谷場上,有一個近似于圓錐形的小麥堆,測得底面直徑是4米,高是1.2米,每立方米小麥約重735千克,這堆小麥約有多少千克?(得數(shù)保留整千克)

  (1)提問:從題目中你知道了什么?

  (2)學(xué)生獨(dú)立完成后教師提問,并回答學(xué)生的質(zhì)疑:

  3.14×(4÷2)2×1.2× 1/3 表示什么?為什么要先求圓錐的體積?得數(shù)保留整千克數(shù)是什么意思?….

  5、比較:例1和例2有什么不同的地方?

  (1)例1直接告訴了我們底面積,而例2沒有直接告訴,要求我們先求出底面積,再求出圓錐體積;(2)例1 是直接求體積,例2是求出體積后再求重量。

《圓錐的體積》教案2

  教學(xué)目標(biāo)

  1、知識與技能目標(biāo):使學(xué)生理解和掌握圓錐體積的計(jì)算公式,會運(yùn)用公式計(jì)算圓錐的體積并解決簡單的實(shí)際問題。

  2、過程與方法:在推導(dǎo)公式過程中,通過小組合作、動手實(shí)驗(yàn)的方法,培養(yǎng)學(xué)生分析、推理的能力及抽象概括能力。

  3、態(tài)度、情感、價(jià)值觀:在探究公式的過程中,向?qū)W生滲透“事物之間是相互聯(lián)系”的,并通過活動,使學(xué)生形成良好的合作探究意識。

  教學(xué)重難點(diǎn)

  教學(xué)重點(diǎn):掌握圓錐體積的計(jì)算公式。

  教學(xué)難點(diǎn):圓錐體積公式的推導(dǎo)過程。

  教學(xué)過程

  一、復(fù)習(xí)舊知,情景導(dǎo)入

  1、怎樣計(jì)算圓柱的體積?

  2、一個圓柱的底面積是60平方分米,高

  是15分米,它的體積是多少立方分米?

  3、說一說圓錐有哪些特征?

 。1)頂部:

  (2)底面:

 。3)側(cè)面:

  (4)高:

  4、我們學(xué)習(xí)了圓柱的體積,還認(rèn)識了圓錐體。

  同學(xué)們看今年又是一個豐收年,農(nóng)民伯伯可高興了,你能幫他們計(jì)算收了多少糧食嗎?也就是求圓錐的體積。圓錐的體積怎樣計(jì)算呢?它又是怎樣推導(dǎo)出來了呢?這節(jié)課我們就來研究這個問題。(板書課題:圓錐的體積)

  二、新課

  1、引導(dǎo)學(xué)生借助圓柱,探討圓錐的體積公式。

  ①、猜:圓錐的體積怎樣計(jì)算呢?大膽猜一下。

 、、圓錐的體積公式是怎樣推導(dǎo)的呢?你有什么想法?小組內(nèi)討論。

  2、下面我們就用實(shí)驗(yàn)的方法來推導(dǎo)圓椎的體積公式。

  老師提供了實(shí)驗(yàn)用具,(每組有1個圓柱和一個圓錐實(shí)驗(yàn)杯,一瓶礦泉水)

  (1)引導(dǎo)學(xué)生觀察用來實(shí)驗(yàn)的.圓錐、圓柱的特點(diǎn):圓柱和圓錐都是等底等高(師板書:等底等高)

  (2)學(xué)生實(shí)驗(yàn):

  你想怎么做實(shí)驗(yàn)?小組內(nèi)議一議,老師指導(dǎo)倒一下水。請同學(xué)們以小組為單位進(jìn)行實(shí)驗(yàn),在實(shí)驗(yàn)中,注意填好實(shí)驗(yàn)報(bào)告表。(大屏幕出示實(shí)驗(yàn)報(bào)告表)

  A:你們小組是怎樣進(jìn)行實(shí)驗(yàn)的?

  B:通過實(shí)驗(yàn),你們發(fā)現(xiàn)了所給的圓錐、圓柱在體積上有什么關(guān)系?

  C:根據(jù)這個關(guān)系怎樣求出圓錐的體積?學(xué)生匯報(bào),完成計(jì)算公式的推導(dǎo)。

  3、同學(xué)們一定有不少的收獲和發(fā)現(xiàn),下面我們來交流一下。

  要求:小組內(nèi)先交流一下,選三四名同學(xué)到前面來匯報(bào)。哪個小組同學(xué)匯報(bào)?哪個小組同學(xué)補(bǔ)充?(學(xué)生實(shí)驗(yàn)并講解,教師糾正:實(shí)驗(yàn)總是不十分準(zhǔn)確,有可能差點(diǎn)。)

  一名學(xué)生匯報(bào),師板書。

  生:我們把圓錐裝滿水,倒入這個圓柱體當(dāng)中,正好倒了3次倒?jié)M,得出圓錐的體積等于這個圓柱的體積的1/3,因?yàn)閳A柱的體積v=sh,所以圓錐的體積v =1/3sh

  (教師板書)圓錐的體積= 1/3 ×底面積×高

  等底等高V=1/3Sh(圓柱的體積怎樣求?圓錐的體積怎樣求?)

  4、反饋。同學(xué)們經(jīng)過實(shí)驗(yàn),發(fā)現(xiàn)了用來實(shí)驗(yàn)的圓錐的體積等于圓柱的體積的1/3,老師也想做實(shí)驗(yàn):出示一個非常大的圓柱,一個很小的圓錐,這個圓柱的體積是圓錐體積的3倍嗎?(為什么?)

  我們已經(jīng)推導(dǎo)出了圓錐的體積公式V、S、h表示什么?利用這一關(guān)系推導(dǎo)出圓錐的體積:V錐=1/3 Sh)

  圓柱的體積是與它等底等高圓錐體積的3倍。

  圓錐的體積是與它等底等高圓柱體積的1/3 。

  三、鞏固應(yīng)用

  1、如果小麥堆的底面半徑為2米,高是1.5米。你能計(jì)算出小麥堆的體積嗎?

 。ㄒ幻麑W(xué)生板演并匯報(bào))學(xué)生講解。

  答:這個小麥堆的體積是6.28立方厘米。注意:計(jì)算公式上有無漏洞、計(jì)算上的指導(dǎo)(約分)單位名稱上的指導(dǎo)(立方)。

  2、想一想。議一議。說一說:

 。1)已知圓錐的底面半徑r和高h(yuǎn),如何求體積V?

 。2)已知圓錐的底面直徑d和高h(yuǎn),如何求體積V?

  (3)已知圓錐的底面周長C和高h(yuǎn),如何求體積V?

  4、考考你:

  有一根底面直徑是6厘米,長是15厘米的圓柱形鋼材,要把它削成與它等底等高的圓錐形零件。要削去鋼材多少立方厘米?

  四、課堂小結(jié)

  這節(jié)課你有什么收獲?

  板書:圓錐的體積

  圓錐的體積=1/3 ×底面積×高

《圓錐的體積》教案3

  一、學(xué)習(xí)目標(biāo)

  (一)學(xué)習(xí)內(nèi)容

  《義務(wù)教育教科書數(shù)學(xué)》(人教版)六年級下冊第33—34頁的例2和例3。例2是以探索圓錐的體積與和它等底等高的圓柱體積之間的關(guān)系為例,讓學(xué)生在探究過程中獲得數(shù)學(xué)活動經(jīng)驗(yàn)。例3則是在例2的基礎(chǔ)上運(yùn)用圓錐的體積公式解決實(shí)際問題,豐富解決問題的策略,感受數(shù)學(xué)與生活密不可分的聯(lián)系。

 。ǘ┖诵哪芰

  在探索圓錐的體積與和它等底等高的圓柱體積之間的關(guān)系的過程中,滲透轉(zhuǎn)化思想,發(fā)展推理能力。

 。ㄈ⿲W(xué)習(xí)目標(biāo)

  1.借助已有的知識經(jīng)驗(yàn),通過觀察、猜測、實(shí)驗(yàn),探求出圓錐體積的計(jì)算公式,并能運(yùn)用公式正確地解決簡單的實(shí)際問題。

  2.在圓錐體積計(jì)算公式的推導(dǎo)過程中,進(jìn)一步理解圓錐與圓柱的聯(lián)系,發(fā)展推理能力。

 。ㄋ模⿲W(xué)習(xí)重點(diǎn)

  圓錐體積公式的理解,并能運(yùn)用公式求圓錐的體積。

 。ㄎ澹⿲W(xué)習(xí)難點(diǎn)

  圓錐體積公式的推導(dǎo)

  (六)配套資源

  實(shí)施資源:《圓錐的體積》名師課件、若干同樣的圓柱形容器、若干與圓柱等底等高和不等底等高的圓錐形容器,沙子和水

  二、教學(xué)設(shè)計(jì)

  (一)課前設(shè)計(jì)

  1.復(fù)習(xí)任務(wù)

 。1)我們學(xué)過哪些立體圖形?它們的體積計(jì)算公式分別是什么?請你整理出來。

 。2)這些立體圖形的體積計(jì)算公式是怎么推導(dǎo)的?運(yùn)用了什么方法?請整理出來。

  設(shè)計(jì)意圖:通過復(fù)習(xí)物體的體積公式以及圓錐體積的推導(dǎo),深化轉(zhuǎn)化思想在生活中的應(yīng)用,也為圓錐體積的推導(dǎo)埋下伏筆。

 。ǘ┱n堂設(shè)計(jì)

  1.情境導(dǎo)入

  (出示沙堆)

  師:你們有辦法知道這個沙堆的體積嗎?

  學(xué)生自由發(fā)言,提出各種辦法。

  預(yù)設(shè):把它放進(jìn)圓柱形的容器里,測量出圓柱的底面積和高就可以知道等等

  師:能不能像其它立體圖形一樣,探究出一個公式來求圓錐的體積呢?這節(jié)課我們來研究。板書課題

  設(shè)計(jì)意圖:利用情境引入,激發(fā)學(xué)生求知的欲望,引出求圓錐體積公式的必要性。

  2.問題探究

 。1)觀察猜想

  師:你們覺得,圓錐的體積和我們認(rèn)識的哪種立體圖形的體積可能有關(guān)?為什么?

  學(xué)生自由發(fā)言。

 。▓A柱,圓柱的底面是圓,圓錐的底面也是圓……)

  師:認(rèn)真觀察,它們之間的體積會有什么關(guān)系?(出示圓柱、圓錐的教具)

  學(xué)生猜想。

 。2)操作驗(yàn)證

  師:圓錐的體積究竟和圓柱的體積有什么關(guān)系?請同學(xué)們親自驗(yàn)證。

  實(shí)驗(yàn)用具:教師準(zhǔn)備等底等高和不等底等高的各種圓柱、圓錐模具,一些水。

  實(shí)驗(yàn)要求:各組根據(jù)需要先上臺選用實(shí)驗(yàn)用具,然后小組成員分工合作,做好實(shí)驗(yàn)數(shù)據(jù)的收集和整理。

  1號圓錐2號圓錐3號圓錐

  次數(shù)

  與圓柱是否等底等高

  學(xué)生選過實(shí)驗(yàn)用具后進(jìn)行試驗(yàn),教師巡視,發(fā)現(xiàn)問題及時指導(dǎo),收集有用信息。

 。3)交流匯報(bào)

 、賲R報(bào)實(shí)驗(yàn)結(jié)果

  各組匯報(bào)實(shí)驗(yàn)結(jié)果。

 、诜治鰯(shù)據(jù)

  師:觀察全班實(shí)驗(yàn)的數(shù)據(jù),你能發(fā)現(xiàn)什么?

 。ù蟛糠謱(shí)驗(yàn)的結(jié)果是能裝下三個圓錐的水,也有兩次多或四次等)

  師:什么情況下,圓柱剛好能裝下三個圓錐的水?

  各組互相觀察各自的圓柱和圓錐,發(fā)現(xiàn)只有在等底等高的情況下,圓柱的體積是與它等底等高圓錐體積的3倍。也可以說成圓錐的體積是和它等底等高的圓柱的體積的三分之一。

  師:是不是所有符合等底等高條件的圓柱、圓錐,它們的體積之間都具有這種關(guān)系呢?

  老師用標(biāo)準(zhǔn)教具裝沙土再演示一次,加以驗(yàn)證。

 、蹥w納小結(jié)

  師:誰能來總結(jié)一下,通過實(shí)驗(yàn)我們得到的結(jié)果是什么?

 。4)公式推導(dǎo)

  師:你能把上面的試驗(yàn)結(jié)果用式子表示嗎?(學(xué)生嘗試)

  老師結(jié)合學(xué)生的回答板書:

  圓錐的體積公式及字母公式:

  圓錐的體積=×圓柱的體積

 。健恋酌娣e×高

  S=sh

  師:在探究圓錐體積公式的過程中,你認(rèn)為哪個條件最重要?(等底等高)

  進(jìn)一步強(qiáng)調(diào)等底等高的圓錐和圓柱才存在這種關(guān)系。

  設(shè)計(jì)意圖:通過觀察、猜測,讓學(xué)生感知圓錐的體積與圓柱體積之間存在著一定的關(guān)系,滲透轉(zhuǎn)化的思想。再通過對實(shí)驗(yàn)數(shù)據(jù)的分析,進(jìn)一步感知圓錐的體積是和它等底等高的圓柱的體積的三分之一,在這一過程中,發(fā)展學(xué)生的推理能力。

  考查目標(biāo)1、2

 。5)實(shí)踐應(yīng)用

  師:還記得這堆沙子嗎?如果給你了它的高和底面的直徑,你能算出這堆沙的體積大約是多少?如果每立方米沙子重1.5t,這堆沙子大約重多少噸?(得數(shù)保留兩位小數(shù)。)

  師:要求沙堆的'體積需要已知哪些條件?

 。ㄓ捎谶@堆沙堆近似圓錐形,所以可利用圓錐的體積公式來求,需先已知沙堆的底面積和高)

  學(xué)生試做后交流匯報(bào)。

  已知圓錐的底面直徑和高,可以直接利用公式

  V=π()h來求圓錐的體積。

  師:在計(jì)算過程中我們要注意什么?為什么?

  注意要乘以,因?yàn)橥ㄟ^實(shí)驗(yàn),知道圓錐的體積等于與它等底等高的圓柱體積的。

  3.鞏固練習(xí)

  (1)填空。

 、賵A柱的體積是12m,與它等底等高的圓錐的體積是()m。

  ②圓錐的體積是2.5m,與它等底等高的圓柱的體積是()m。

 、蹐A錐的底面積是3.1m2,高是9m,體積是()m。

 。2)判斷,并說明理由。

 、賵A錐的體積等于圓柱體積的。()

 、趫A錐的體積等于和它等底等高的圓柱體積的3倍。()

 。3)課本第34頁的做一做。

 、僖粋圓錐形的零件,底面積是19cm2,高是12cm,這個零件的體積是多少?

  ②一個用鋼鑄造成的圓錐形鉛錘,底面直徑是4cm,高是5cm。每立方厘米鋼大約重7.8g。這個鉛錘重多少克?(得數(shù)保留整數(shù))

  4.課堂總結(jié)

  師:這節(jié)課你收獲了什么?和大家分享一下吧!

  圓柱的體積是與它等底等高圓錐體積的3倍;圓錐的體積是與它等底等高圓柱體積的三分之一;V圓錐=V圓柱=Sh。

 。ㄈ┱n時作業(yè)

  1.王師傅做一件冰雕作品,要將一塊棱長30厘米的正方體冰塊雕成一個最大的圓錐,雕成的圓錐體積是多少立方厘米?

  答案:30÷2=15(厘米)

  ×3.14×152×30

 。235.5×30

  =7065(立方厘米)

  答:雕成的圓錐的體積是7065立方厘米。

  解析:這是一道考察學(xué)生空間思維能力的題,要在正方體里面雕一個最大的圓錐,必須滿足圓錐的底面直徑等于正方體的棱長,圓錐的高也要等于正方體的棱長,在實(shí)際中感受生活和數(shù)學(xué)的緊密聯(lián)系,同時為下面在長方體里放一個最大的圓錐做了鋪墊?疾槟繕(biāo)1、2

  2.看看我們的教室是什么體?(長方體)

  要在我們的教室里放一個盡可能大的圓錐體,想一想,可以怎樣放?怎樣放體積最大?(測量教室長12m,寬6m,高4m.先計(jì)算,再比較怎樣放體積最大的圓錐體。)

  解析:這是一道開放題,有一定的難度,在考察學(xué)生對圓錐體積理解的基礎(chǔ)上,又綜合了長方體的知識,對學(xué)生的空間想象能力要求比較高。

  ①以長寬所在的面為底面做最大的圓錐,此時圓錐的高為4m,底面圓的直徑為6m.

  ②以寬高所在的面為底面做最大的圓錐,此時圓錐的高為12m,底面圓的直徑為4m.

 、垡蚤L高所在的面為底面做最大的圓錐,此時圓錐的高為6m,底面圓的直徑為4m.

  以上三種情況計(jì)算并加以比較,得出結(jié)論?疾槟繕(biāo)1、2

《圓錐的體積》教案4

  教學(xué)目標(biāo):

  1、通過動手操作參與實(shí)驗(yàn),發(fā)現(xiàn)等底等高的圓柱圓錐體積之間的關(guān)系,從而得出圓錐體積的計(jì)算公式。

  2、能運(yùn)用公式解答有關(guān)的實(shí)際問題。

  3、滲透轉(zhuǎn)化、實(shí)驗(yàn)、猜測、驗(yàn)證等數(shù)學(xué)思想方法,培養(yǎng)動手能力和探索意識。

  教學(xué)過程

  一、創(chuàng)設(shè)情境,引發(fā)猜想

  1. 電腦呈現(xiàn)出動畫情境(伴圖配音)。

  夏天,森林里悶熱極了,小動物們都熱得喘不過氣來。一只小白兔去動物超市購物,在冷飲專柜熊伯伯那兒買了一個圓柱形的雪糕。這一切都被躲在一旁的狐貍看見了,它也去熊伯伯的專柜里買了一個圓錐形的雪糕。小白兔剛張開嘴,滿頭大汗的狐貍拿著一個圓錐形的雪糕一溜煙跑了過來。(圖中圓柱形和圓錐形的雪糕是等底等高的。)

  2. 引導(dǎo)學(xué)生圍繞問題展開討論。

  問題一:狐貍貪婪地問:小白兔,用我手中的雪糕跟你換一個,怎么樣?(如果這時小白兔和狐貍換了雪糕,你覺得小白兔有沒有上當(dāng)?)

  問題二:(動畫演示)狐貍手上又多了一個同樣大小的圓錐形雪糕。(小白兔這時和狐貍換雪糕,你覺得公平嗎?)

  問題三:如果你是森林中的小白兔,狐貍手中的圓錐形雪糕有幾個時,你才肯與它交換?(把你的想法與小組同學(xué)交流一下,再向全班同學(xué)匯報(bào))

  過渡:小白兔究竟跟狐貍怎樣交換才公平合理呢?學(xué)習(xí)了圓錐的體積后,就會弄明白這個問題。

  二、自主探索,操作實(shí)驗(yàn)

  下面,請同學(xué)們利用老師提供的實(shí)驗(yàn)材料分組操作,自己發(fā)現(xiàn)屏幕上的圓柱與圓錐體積間的關(guān)系,解決電腦博士給我們提出的問題。

  出示思考題:

 。1)通過實(shí)驗(yàn),你們發(fā)現(xiàn)圓柱的體積和圓錐體積之間有什么關(guān)系?

  (2)你們的小組是怎樣進(jìn)行實(shí)驗(yàn)的?

  1. 小組實(shí)驗(yàn)。

 。1)學(xué)生分6組操作實(shí)驗(yàn),教師巡回指導(dǎo)。(其中4個小組的實(shí)驗(yàn)材料:沙子、水、水槽、量杯、等底等高的圓柱形和圓錐形容器各一個;另外2個小組的實(shí)驗(yàn)材料:沙子等,既不等底也不等高的圓柱形和圓錐形容器各一個,體積有8倍關(guān)系的,也有5倍關(guān)系的。

 。2)同組的學(xué)生做完實(shí)驗(yàn)后,進(jìn)行交流,并把實(shí)驗(yàn)結(jié)果寫在長條黑板上。

  2. 大組交流。

 。1)組織收集信息。

  學(xué)生匯報(bào)時可能會出現(xiàn)下面幾種情況,教師把這些信息逐一呈現(xiàn)在插式黑板上:

  ① 圓柱的體積正好是圓錐體積的.3倍。

 、 圓柱的體積不是圓錐體積的3倍。

 、 圓柱的體積正好是圓錐體積的8倍。

  ④ 圓柱的體積正好是圓錐體積的5倍。

 、 圓柱的體積是等底等高的圓錐體積的3倍。

  ⑥ 圓錐的體積是等底等高的圓柱體積的1/3 。

 。2)引導(dǎo)整理信息。

  指導(dǎo)學(xué)生仔細(xì)觀察,把黑板上的信息分類整理。(根據(jù)學(xué)生反饋的實(shí)際情況靈活進(jìn)行)

 。3)參與處理信息。

  圍繞3倍關(guān)系的情況討論:

 、 請這幾個小組同學(xué)說出他們是怎樣通過實(shí)驗(yàn)得出這一結(jié)論的?

 、 哪個小組得出的結(jié)論更加科學(xué)合理一些?

  圓錐的體積是等底等高的圓柱體積的1/3。

 。ㄍ怀龅鹊椎雀撸⒄埶麄兡贸鰧(shí)驗(yàn)用的器材,自己比劃、驗(yàn)證這個結(jié)論。)

 、垡龑(dǎo)學(xué)生自主修正另外兩個結(jié)論。

  3. 誘導(dǎo)反思。

 。1)為什么有兩個小組實(shí)驗(yàn)的結(jié)果不是3倍關(guān)系呢?

 。2)把一個空心的圓錐慢慢按入等底等高且裝滿水的圓柱形容器里,剩下水的體積是多少?這時和圓柱體積有什么關(guān)系?

  4. 推導(dǎo)公式。

  嘗試運(yùn)用信息推導(dǎo)圓錐的體積計(jì)算公式。

 。1)這里Sh表示什么?為什么要乘1/3?

 。2)要求圓錐體積需要知道哪兩個條件?

  5. 問題解決。

  童話故事中的小白兔和狐貍怎樣交換才公平合理呢?它需要什么前提條件?(動畫演示:等底等高)之后播放狐貍拿著圓錐形雪糕離去的畫面。

  三、運(yùn)用公式,解決問題

  1. 教學(xué)例1。一個圓錐形的零件,底面積是19平萬厘米,高是12厘米。這個零件的體積是多少?

  2. 學(xué)生嘗試行算,指名板演,集體訂正。

  3. 引導(dǎo)小結(jié):不要漏乘1/3;計(jì)算時,能約分時要先約分。

  四、鞏固練習(xí),拓展深化(略)

  五、質(zhì)疑問難,總結(jié)升華

  通過這節(jié)課的學(xué)習(xí),你們探索到了什么?怎樣推導(dǎo)出圓錐體積公式的?

  回到童話情節(jié)。我們發(fā)現(xiàn)三個圓錐形的雪糕換一個與它等底等高的圓柱形雪糕公平合理,如果狐貍只用一個圓錐形的雪糕和小白兔交換,而不使小白兔吃虧,那么圓錐形的雪糕應(yīng)該是什么樣的?配合用課件演示。

《圓錐的體積》教案5

  教學(xué)目標(biāo)

  1、知識目標(biāo):使學(xué)生理解和掌握求圓錐體積的計(jì)算公式,并能正確求出圓錐的體積。、

  2、能力目標(biāo):培養(yǎng)學(xué)生初步的空間觀念,動手操作能力和邏輯思維能力。

  3、情感目標(biāo):向?qū)W生滲透知識間可以相互轉(zhuǎn)化的辯證唯物主義思想,讓學(xué)生學(xué)習(xí)將新知識轉(zhuǎn)化為原有知識的學(xué)習(xí)方法、

  教學(xué)重難點(diǎn)

  教學(xué)重點(diǎn):圓錐的體積計(jì)算。

  教學(xué)難點(diǎn):圓錐的體積計(jì)算公式的推導(dǎo)。

  教學(xué)工具

  ppt課件。

  教學(xué)過程

  一、導(dǎo)入新課

  1、出示鉛錘

  師:同學(xué)們,我們剛認(rèn)識了圓錐,在學(xué)習(xí)“圓錐的認(rèn)識”時認(rèn)識了這個物體—鉛錘。鉛錘的外形是圓錐形的,這個鉛錘所占空間的大小叫做這個鉛錘的體積。

  問:你們有沒有辦法來測量這個鉛錘的體積?

  生:排水法

  師:同學(xué)們回答很積極,想到了之前學(xué)過的排水法,那咱們對這個方法進(jìn)行一下評價(jià)(學(xué)生想到了,并不是所有的圓錐都可以用排水法來測量體積。比如一些龐大的圓錐形物體)

  2、PPT出示圓錐形麥堆和圓錐形的高大的建筑物

  像這種比較大的圓錐形的物體就不適合用排水法測量體積,所以我們需要找到一個解決此類問題的`普遍的方法。

  出示課題圓錐的體積

  二、探究新知

  1、回憶

  師:我們學(xué)過那些形狀的物體的體積的計(jì)算方法

  生:長方體正方體圓柱體(學(xué)生邊說,師邊PPT出示圖片)

  師:我們在推導(dǎo)圓柱體體積的計(jì)算方法的時候是將圓柱體轉(zhuǎn)化長方體或者正方體,轉(zhuǎn)化前后體積不變,你覺得圓錐體和哪種形狀的物體有關(guān)系呢?

  生:圓柱體

  師:為什么?

  生:圓錐體和圓柱體都有圓形的底面

  2、猜測

  師:既然大家都認(rèn)為圓錐體和圓柱體由一定的關(guān)系,你能大膽猜測一下,圓錐體和圓柱體的體積之間有怎樣的關(guān)系么?

 。▽W(xué)生猜測,找學(xué)生說說猜測的結(jié)果)

  3、驗(yàn)證

  師:有了猜測我們就通過實(shí)驗(yàn)來驗(yàn)證咱們的猜測(利用學(xué)具進(jìn)行驗(yàn)證,一邊實(shí)驗(yàn),一邊填寫實(shí)驗(yàn)記錄單)

 。ㄕ覍W(xué)生讀一讀表格中需要填寫的內(nèi)容,并提問,比較圓柱和圓錐的時候,是比較的什么?為學(xué)生的實(shí)驗(yàn)操作做一個引領(lǐng)。操作過程6—8分鐘)

  4、實(shí)驗(yàn)后討論,并分組匯報(bào)實(shí)驗(yàn)結(jié)果

 。ㄔ趯(shí)驗(yàn)中我設(shè)置了兩次不同的實(shí)驗(yàn),第一次是等底等高的圓柱和圓錐,第二次是等底不等高的圓柱和圓錐,以便對比得出結(jié)論,并不是所有的圓柱和圓錐都符合3倍關(guān)系,是有前提條件的)

  5、結(jié)論

  通過操作發(fā)現(xiàn):圓錐的體積是同它等底等高的圓柱體積的1/3

  板書:圓柱的體積=底面積×高

  圓錐的體積=底面積×高÷3

  三、運(yùn)用知識

  1、PPT出示填空和判斷

  師:我們學(xué)會了求圓錐的體積的計(jì)算方法,現(xiàn)在我們利用所學(xué)知識來解決生活中的實(shí)際問題。

  2、PPT出示例題3

  (學(xué)生計(jì)算,計(jì)算過程中巡視學(xué)生解題情況,挑選兩種不同的解題方法展示)

  四、拓展

  PPT出示拓展題

  五、總結(jié),談收獲

  通過本節(jié)課的學(xué)習(xí),你有哪些收獲?

《圓錐的體積》教案6

  教學(xué)內(nèi)容:

  教科書第20~21頁例5及相應(yīng)的 試一試,練一練和練習(xí)四的第1~3題。

  教學(xué)目標(biāo):

  1.組織學(xué)生參與實(shí)驗(yàn),從而推導(dǎo)出圓錐體積的計(jì)算公式。

  2.會運(yùn)用圓錐的體積計(jì)算公式計(jì)算圓錐的體積。

  3.培養(yǎng)學(xué)生觀察、比較、分析、綜合的能力以及初步的空間觀念。

  4.以小組形式參與學(xué)習(xí)過程,培養(yǎng)學(xué)生的合作意識。

  5.滲透轉(zhuǎn)化的數(shù)學(xué)思想。

  教學(xué)重點(diǎn):

  理解和掌握圓錐體積的計(jì)算公式。

  教學(xué)難點(diǎn):

  理解圓柱和圓錐等底等高時體積間的倍數(shù)關(guān)系。

  教學(xué)資源:

  等底等高的圓柱和圓錐容器一套,一些沙或米等。

  教學(xué)過程:

  一、聯(lián)系舊知,設(shè)疑激趣,導(dǎo)入新課。

  1.我們已經(jīng)知道了哪些立體圖形體積的.求法?(學(xué)生回答時老師出示相應(yīng)的教具---長方體,正方體圓柱體,然后板書相應(yīng)的計(jì)算公式。)

  2.我們是用什么方法推出圓柱體積的計(jì)算公式的?(是把圓柱體轉(zhuǎn)化為長方體來推導(dǎo)的。板書:轉(zhuǎn)化)

  3.(出示教具)大家覺得這個圓錐與哪個立體圖形的關(guān)系最近呢?(老師比較學(xué)生指出的圓柱與圓錐的底和高,引導(dǎo)學(xué)生發(fā)現(xiàn)這個圓柱與圓錐等底等高。)

  4.大家覺得我們今天要研究的圓錐的體積可能轉(zhuǎn)化為什么圖形來研究比較簡單呢?能說說自己的理由嗎?

  5.它們的體積之間到底有什么關(guān)系呢?

  二、實(shí)驗(yàn)操作、推導(dǎo)圓錐體積計(jì)算公式。

  1.課件出示例5。

 。1)通過演示使學(xué)生知道什么叫等底等高。

  (2)讓學(xué)生猜想:圖中的圓錐和圓柱等底等高,你能猜想一下它們體積之間有怎樣的關(guān)系?

 。3)實(shí)驗(yàn)操作,發(fā)現(xiàn)規(guī)律。

 。ㄓ脤W(xué)具演示)在空圓錐里裝滿黃沙,然后倒入空圓柱里,看看倒幾次正好裝滿。(用有色水演示也可)從倒的次數(shù)看,你發(fā)現(xiàn)圓錐體積與等底等高的圓柱體積之間有怎樣的關(guān)系?得出圓錐的體積是與它等底等高的圓柱體體積的 。

  老師把圓柱里的黃沙倒進(jìn)圓錐,問:把圓柱內(nèi)的沙往圓錐內(nèi)倒三次倒光,你又發(fā)現(xiàn)什么規(guī)律?

 。4)是不是所有的圓柱和圓錐都有這樣的關(guān)系?教師可出示不等底不等高的圓錐、圓柱,讓學(xué)生通過觀察實(shí)驗(yàn),得出只有等底等高的圓錐才是圓柱體積的 。

  2.教師課件演示

  3.學(xué)生討論實(shí)驗(yàn)情況,匯報(bào)實(shí)驗(yàn)結(jié)果。

  4.啟發(fā)引導(dǎo)推導(dǎo)出計(jì)算公式并用字母表示。

  圓錐的體積=等底等高的圓柱的體積 1/3=底面積高1/3

  用字母表示:V= 1/3Sh

  小結(jié):要求圓錐體積必須知道哪些條件,公式中的底面積乘以高,求的是什么?為什么要乘以1/3 ?

  5.教學(xué)試一試

 。1)出示題目

  (2)審題后可讓學(xué)生根據(jù)圓錐體積計(jì)算公式自己試做。

 。3)批改講評。注意些什么問題。

  三、發(fā)散練習(xí)、鞏固推展

  1.做練一練第1.2題。

  指名一人板演,其余學(xué)生做在練習(xí)本上。集體訂正,強(qiáng)調(diào)要乘以1/3 。

  2.做練習(xí)四第1.2題。

  學(xué)生做在課本上。之后學(xué)生反饋。錯的要求說明理由。

  四、小結(jié)

  這節(jié)課你學(xué)習(xí)了什么內(nèi)容?圓錐有怎樣的特征?圓錐的體積怎樣計(jì)算?為什么?

  學(xué)生交流

  五、作業(yè)

  練習(xí)四第3題。

《圓錐的體積》教案7

  教學(xué)目的:

  1、情感目標(biāo) 培養(yǎng)學(xué)生探索合作精神。

  2、知識目標(biāo) 理解圓錐體積公式的推導(dǎo)過程,掌握圓錐體積的計(jì)算公式,以及運(yùn)用公式計(jì)算圓錐體積。

  3、能力目標(biāo) 培養(yǎng)學(xué)生的空間想象力,合作交往能力、創(chuàng)新思維以及動手操作能力 。

  重點(diǎn) 理解圓錐體積公式的推導(dǎo)過程,掌握圓錐體積的計(jì)算公式。

  難點(diǎn) 圓錐體積計(jì)算公式的推導(dǎo)過程。

  關(guān)鍵 公式推導(dǎo)過程中:圓柱體和圓錐體必須是等底等高,則它們之間才存在必然的關(guān)系。

  活動一:比大小

  活動目的:激發(fā)求知欲望。

  課件播放:春天到了,萬物復(fù)蘇,春筍也從睡夢中醒來,三只可愛的小熊貓來到竹林中踩竹筍,它們都踩到了一只竹筍。熊貓都都說:今天我踩的.竹筍是最大的。熊貓瞇瞇聽了不服氣的說:誰說的,第一大的應(yīng)該是我的竹筍。熊貓花花也不甘示弱的說:不對,不對,我的竹筍應(yīng)該是第一大!

  師:竹林里的爭論還在繼續(xù)著,同學(xué)們,到底三只熊貓的竹筍誰的最大呢?讓我們來猜一猜吧!

  師:我們光是猜,說服力并不強(qiáng),那么能找到什么真正能解決問題的辦法嗎?

  活動二:議一議

  活動目的:通過師生、生生的互動討論、交流、探究,從而發(fā)現(xiàn)圓錐的體積和圓柱的體積有關(guān)。

  1、出示課題

  2、找圓錐體和學(xué)過的什么體有相似之處

  3、猜一猜,圓柱的體積和圓錐的體積的關(guān)系。

《圓錐的體積》教案8

  【教材分析】

  本節(jié)課屬于空間與圖形知識的教學(xué),是小學(xué)階段幾何知識的重難點(diǎn)部分,是小學(xué)學(xué)習(xí)立體圖形體積計(jì)算的飛躍,通過這部分知識的教學(xué),可以發(fā)展學(xué)生的空間觀念、想象能力,較深入地理解幾何體體積推導(dǎo)方法的新領(lǐng)域,為學(xué)生進(jìn)一步學(xué)習(xí)幾何知識奠定良好的基礎(chǔ)。本節(jié)內(nèi)容是在學(xué)生了解了圓錐的特征,掌握了圓柱體積的計(jì)算方法基礎(chǔ)上進(jìn)行教學(xué)的,教材重視類比,轉(zhuǎn)化思想的滲透,直觀引導(dǎo)學(xué)生經(jīng)歷“猜測、類比、觀察、實(shí)驗(yàn)、探究、推理、總結(jié)”的探索過程,理解掌握求圓錐體積的計(jì)算公式,會運(yùn)用公式計(jì)算圓錐的體積。這樣不僅幫助學(xué)生建立空間觀念,還能培養(yǎng)學(xué)生抽象的邏輯思維能力,激發(fā)學(xué)生的想象力.

  【設(shè)計(jì)理念】

  數(shù)學(xué)課程標(biāo)準(zhǔn)中指出:應(yīng)放手讓學(xué)生經(jīng)歷探索的過程,在觀察、操作、推理、歸納、總結(jié)過程中掌握知識、發(fā)展空間觀念,從而提高學(xué)生自主解決問題的能力。

  【教學(xué)目標(biāo)】

  1、知識與技能:掌握圓錐的體積計(jì)算公式,能運(yùn)用公式求圓錐的體積,并且能運(yùn)用這一知識解決生活中一些簡單的實(shí)際問題。

  2、過程與方法:通過“直覺猜想——試驗(yàn)探索——合作交流——得出結(jié)論——實(shí)踐運(yùn)用”探索過程,獲得圓錐體積的推導(dǎo)過程和學(xué)習(xí)的方法。

  3、情感、態(tài)度與價(jià)值觀:培養(yǎng)學(xué)生勇于探索的求知精神,感受到數(shù)學(xué)來源于生活,能積極參與數(shù)學(xué)活動,自覺養(yǎng)成與人合作交流與獨(dú)立思考的良好習(xí)慣。

  【教學(xué)重點(diǎn)】

  圓錐體積公式的理解,并能運(yùn)用公式求圓錐的體積。

  【教學(xué)難點(diǎn)】

  圓錐體積公式的推導(dǎo)

  【學(xué)情分析】

  學(xué)生已學(xué)習(xí)了圓柱的`體積計(jì)算,在教學(xué)中采用放手讓學(xué)生操作、小組合作探討的形式,讓學(xué)生在研討中自主探索,發(fā)現(xiàn)問題并運(yùn)用學(xué)過的圓柱知識遷移到圓錐,得出結(jié)論。所以對于新的知識教學(xué),他們一定能表現(xiàn)出極大的熱情。

  【教法學(xué)法】

  試驗(yàn)探究法小組合作學(xué)習(xí)法

  【教具學(xué)具準(zhǔn)備】

  多媒體課件,等底等高圓柱圓錐各6個,水槽6個(裝有適量的水)

  【教學(xué)課時】

  2課時

  【教學(xué)流程】

  第一課時

  一、回顧舊知識

  1、你能計(jì)算哪些規(guī)則物體的體積?

  2、你能說出圓錐各部分的名稱嗎?

  【設(shè)計(jì)意圖】通過對舊知識的回顧,進(jìn)一步為學(xué)習(xí)新知識作好鋪墊。

  二、創(chuàng)設(shè)情景激發(fā)激情

  展示磚工師傅使用的鉛錘體(圓錐),你能測試出它的體積嗎?

  【設(shè)計(jì)意圖】以生活中的數(shù)學(xué)的形式進(jìn)行設(shè)置情景,引疑激趣遷移,激發(fā)學(xué)生好奇心和求知欲。(揭示課題:圓錐的體積)

  三、試驗(yàn)探究合作學(xué)習(xí)(探討圓柱與圓錐體積之間的關(guān)系)

  探究一:(分組試驗(yàn))圓柱與圓錐的底和高各有什么關(guān)系?

  1、猜想:猜想它們的底、高之間各有什么關(guān)系?

  2、試驗(yàn)驗(yàn)證猜想:每組拿出圓柱、圓錐各1個,分組試驗(yàn),試驗(yàn)后記錄結(jié)果;

  3、小組匯報(bào)試驗(yàn)結(jié)論,集體評議:(注意匯報(bào)出試驗(yàn)步驟和結(jié)論)

  4、教師介紹數(shù)學(xué)專用名詞:等底等高

  【設(shè)計(jì)意圖】通過探究一活動,初步突破了本課的難點(diǎn),為探究二活動活動開展作好了鋪墊。

  探究二:(分組試驗(yàn))研討等底等高圓柱與圓錐的體積之間有什么關(guān)系?

  1、大膽猜想:等底等高圓柱與圓錐體積之間的關(guān)系

  2、試驗(yàn)驗(yàn)證猜想:每組拿出水槽(裝有適量的水),通過試驗(yàn),你發(fā)現(xiàn)了圓柱的體積和圓錐的體積有什么關(guān)系?邊試驗(yàn)邊記錄試驗(yàn)數(shù)據(jù)(教師巡視指導(dǎo)每組的試驗(yàn))

  3、小組匯報(bào)試驗(yàn)結(jié)論(提醒學(xué)生匯報(bào)出試驗(yàn)步驟)

  教學(xué)預(yù)設(shè):

  (1)圓椎的體積是圓柱體積的3倍;

  (2)圓錐的體積是圓柱體積的三分之一;

  (3)當(dāng)?shù)鹊椎雀邥r,圓柱體積是圓錐體積的3倍,或圓錐的體積是圓柱體積的三分之一等等。

  4、通過學(xué)生匯報(bào)的試驗(yàn)結(jié)論,分析歸納總結(jié)試驗(yàn)結(jié)論。

  5、你能用字母表示出它們的關(guān)系嗎?要求圓錐的體積必須知道什么條件呢?(學(xué)生反復(fù)朗讀公式)

  【設(shè)計(jì)意圖】通過學(xué)生分組試驗(yàn)探究,在實(shí)驗(yàn)過程中自主猜想、感知、驗(yàn)證、得出結(jié)論的過程,充分調(diào)動學(xué)生主動探索的意識,激發(fā)了學(xué)生的求知欲,培養(yǎng)了學(xué)生的動手能力,突破了本課的難點(diǎn),突出了教學(xué)的重點(diǎn)。

  探究三:(伸展試驗(yàn)---演示試驗(yàn))研討不等底等高圓柱與圓錐題的體積是否具有三分之一的關(guān)系。

  1、觀察老師的試驗(yàn),你發(fā)現(xiàn)了圓柱與圓錐的底和高各有什么關(guān)系?

  2、觀察老師的試驗(yàn),你發(fā)現(xiàn)了不等底等高的圓柱與圓錐的體積之間還有三分之一的關(guān)系嗎?

  3、學(xué)生通過觀看試驗(yàn)匯報(bào)結(jié)論。

  4、教師引導(dǎo)學(xué)生分析歸納總結(jié)圓錐體積是圓柱體積的三分之一所存在的條件。

  5、結(jié)合探究二和探究三,進(jìn)一步引導(dǎo)學(xué)生掌握圓錐的體積公式。

  【設(shè)計(jì)意圖】通過教師課件演示試驗(yàn),進(jìn)一步讓學(xué)生明白圓錐體積是圓柱體積的三分之一所存在的條件,更進(jìn)一步加強(qiáng)學(xué)生對圓錐體積公式理解,再次突出了本課的難點(diǎn),培養(yǎng)了學(xué)生的觀察能,分析能力,邏輯思維能力等,進(jìn)一步讓學(xué)生從感性認(rèn)識上升到了理性認(rèn)識。

  四、實(shí)踐運(yùn)用提升技能

  1、判斷題:【題目內(nèi)容見多媒體展示】獨(dú)立思考---抽生匯報(bào)---說明理由---師生評議

  2、口答題:【題目內(nèi)容見多媒體展示】獨(dú)立思考---抽生匯報(bào)---學(xué)生評議

  3、拓展運(yùn)用:【課本例題3】學(xué)生分析題意---小組合作解答---學(xué)生解答展示---師生評議

  【設(shè)計(jì)意圖】通過判斷題、口答題題型的訓(xùn)練,及時檢查學(xué)生對所學(xué)知識的理解程度,鞏固了圓錐體的體積公式。而拓展題型具有開放性給學(xué)生提供思維發(fā)展的空間,讓他們有跳起來摘果子的機(jī)會,以達(dá)到培養(yǎng)能力、發(fā)展個性的目的。

  五、談?wù)勈斋@:

  這節(jié)課你學(xué)到了什么呢?

  六、課堂作業(yè):

  1、做在書上作業(yè):練習(xí)四第4、7題

  2、坐在作業(yè)本上作業(yè):練習(xí)四第3題

  【課后反思】

  【板書設(shè)計(jì)】

《圓錐的體積》教案9

  一、學(xué)習(xí)內(nèi)容:

  教師提供 小學(xué)數(shù)學(xué)六年級下冊14頁----17頁。

  二、學(xué)生提供:

  等底等高的圓柱和圓錐教學(xué)用具各一個,小水盆,一些綠豆。

  三、學(xué)習(xí)目標(biāo):

  1、結(jié)合具體情景和實(shí)踐活動,了解圓錐的體積或容積的含義,進(jìn)一步體會物體體積和容積的含義。

  2、經(jīng)歷“類比猜想---驗(yàn)證說明”的探索圓錐體積計(jì)算方法的過程,掌握圓錐體積的計(jì)算方法,能正確計(jì)算圓錐的體積,并解決一些簡單的實(shí)際問題。

  四、重點(diǎn)難點(diǎn):

  重點(diǎn):圓錐的體積計(jì)算。

  難點(diǎn)圓錐的體積公式推導(dǎo)。

  關(guān)鍵:圓錐的體積是與它等底等高的圓柱體積的三分之一。

  五、學(xué)習(xí)準(zhǔn)備:

  等底等高的圓柱和圓錐教學(xué)用具各一個,一個三角形和一個長方形。

  看看你們能不能發(fā)現(xiàn)這兩個圖形之間隱藏的關(guān)系?你有什么發(fā)現(xiàn)?

  長方形的長等于三角形的底,長方形的寬等于三角形的高。

  你的發(fā)現(xiàn)真了不起。這種情況在數(shù)學(xué)中叫做“等底等高”。在“等底等高”的條件時,它們的面積又有什么樣的關(guān)系呢?

  三角形的面積等于長方形面積的一半或長方形面積是三角形面積的2倍。

  六、布置課前預(yù)習(xí)

  點(diǎn)撥自學(xué)

  1、圓柱和圓錐有哪些相同的地方?

  2、圓柱和圓錐有哪些不同的地方?

  3、圓錐的體積和圓柱的體積有什么關(guān)系呢?

  請小組開始討論。注意,這里的圓柱和圓錐指的就是圖上的.圓柱和圓錐喲! 按照預(yù)習(xí)中學(xué)生存在的問題,教師加以點(diǎn)撥。

  七、交流解惑:

  它們的底面積相等,高也相等

  圓柱有無數(shù)條高,圓錐只有一條高。圓錐體積比圓柱小……

  動手做實(shí)驗(yàn):把圓錐裝滿綠豆,倒入圓柱中,看倒幾次能把圓柱裝滿。

  通過實(shí)驗(yàn)操作,得出了正確的科學(xué)的結(jié)論:圓錐的體積等于和它等底等高的圓柱體積的三分之一。 組內(nèi)交流

  組際解疑

  老師點(diǎn)撥

  八、合作考試

  1、一個圓錐形的零件,底面積是19平方厘米,高是12厘米,這個零件的體積是多少?(口算)

  2、沈老師在大梅沙玩,將沙堆成一個圓錐形,底

  面半徑約3分米,高約2.7分米,求沙堆的體積。

 。ㄖ涣惺讲挥(jì)算)

  3、在打谷場上,有一個近似于圓錐的小麥堆,測

  底面直徑是4米,高是1.2米。每立方米小麥約

  重735千克,這堆小麥大約有多少千克?

 。ㄖ涣惺讲挥(jì)算)

  4、如圖,求這枝大筆的體積。

 。▎挝唬豪迕祝

 。ㄖ涣惺讲挥(jì)算)

  5、將一個底面半徑是2分米,高是4分米的圓柱

  形木塊,削成一個最大的圓錐,那么削去的體積

  是多少立方分米?(口算)

  九、自我總結(jié):

  通過今天的學(xué)習(xí),我學(xué)會了 ,以后我會 在 方面更加努力的。

  十、教學(xué)反思:

  本節(jié)課通過交流、問答、猜想等形式,調(diào)動學(xué)生學(xué)習(xí)的積極性,激發(fā)學(xué)生強(qiáng)烈的探究欲望,學(xué)生迫切希望通過實(shí)驗(yàn)來證實(shí)自己的猜想,所以做起實(shí)驗(yàn)來就興趣極高,在實(shí)驗(yàn)過程中通過學(xué)生的親身體驗(yàn)知識的探究的過程,加深學(xué)生對所學(xué)知識的理解,學(xué)生學(xué)習(xí)的積極性被調(diào)動起來了,學(xué)生學(xué)得輕松、愉快。充分讓學(xué)生體會到了等底等高的圓錐的體積是圓柱的三分之一。

《圓錐的體積》教案10

  教學(xué)內(nèi)容:第25~26頁,例2、例3及練習(xí)四的第3~8題。

  教學(xué)目的:

  1、通過分小組倒水實(shí)驗(yàn),使學(xué)生自主探索出圓錐體積和圓柱體積之間的關(guān)系,初步掌握圓錐體積的計(jì)算公式,并能運(yùn)用公式正確地計(jì)算圓錐的體積,解決實(shí)際生活中有關(guān)圓錐體積計(jì)算的簡單問題。

  2、借助已有的生活和學(xué)習(xí)經(jīng)驗(yàn),在小組活動過程中,培養(yǎng)學(xué)生的動手操作能力和自主探索能力。

  3、通過小組活動,實(shí)驗(yàn)操作,巧妙設(shè)置探索障礙,激發(fā)學(xué)生的自主探索意識,發(fā)展學(xué)生的空間觀念。

  教學(xué)重點(diǎn):掌握圓錐體積的計(jì)算公式。

  教學(xué)難點(diǎn):正確探索出圓錐體積和圓柱體積之間的關(guān)系。

  教學(xué)準(zhǔn)備:圓錐與等底等高的圓柱,圓錐與不等底等高的圓柱。

  教學(xué)過程:

  一、復(fù)習(xí)

  1、圓錐有什么特征?(使學(xué)生進(jìn)一步熟悉圓錐的特征:底面、側(cè)面、高和頂點(diǎn))

  2、圓柱體積的計(jì)算公式是什么?

  指名學(xué)生回答,并板書公式:“圓柱的體積=底面積×高”。

  二、新課

  1、教學(xué)圓錐體積的計(jì)算公式。

 。1)回憶圓柱體積計(jì)算公式的推導(dǎo)過程,使學(xué)生明確求圓柱的體積是通過切拼成長方體來求得的.

  (2)能不能也通過已學(xué)過的圖形來求呢?圓錐的體積可能和什么圖形的體積有關(guān)?圓錐的體積該怎樣求呢?(指出:我們可以通過實(shí)驗(yàn)的方法,得到計(jì)算圓錐體積的公式)

 。3)拿出等底等高的圓柱和圓錐各一個,通過演示,使學(xué)生發(fā)現(xiàn)“這個圓錐和圓柱是等底等高的,下面我們通過實(shí)驗(yàn),看看它們之間的體積有什么關(guān)系?”

  (4)先在圓錐里裝滿水,然后倒入圓柱。讓學(xué)生注意觀察,倒幾次正好把圓柱裝滿?

 。ń處熥寣W(xué)生注意,記錄幾次,使學(xué)生清楚地看到倒3次正好把圓柱裝滿。)

 。5)這說明了什么?(這說明圓錐的體積是和它等底等高的圓柱的體積的 )還可以怎么說?

  板書:圓錐的體積=1/3×圓柱的體積=1/3×底面積×高,字母公式:V=1/3Sh

  拿不等底等高的圓柱與圓錐進(jìn)行實(shí)驗(yàn)。為什么倒3次不能剛好倒,和剛才不一樣呢?

  強(qiáng)調(diào):“等底等高”。

  問:Sh表示什么?為什么要乘1/3?

  練習(xí):一個圓柱的體積是27立方分米,與它等底等高的圓錐體積是多少?

  一個圓錐的體積是15立方厘米,與它等底等高的圓柱的體積是多少?

  2、教學(xué)練習(xí)四第3題

 。1)這道題已知什么?求什么?已知圓錐的底面積和高應(yīng)該怎樣計(jì)算?

 。2)引導(dǎo)學(xué)生對照圓錐體積的計(jì)算公式代入數(shù)據(jù),然后讓學(xué)生自己進(jìn)行計(jì)算,做完后集體訂正。

  說明:不要漏乘1/3,計(jì)算時能約分的要先約分。

  3、鞏固練習(xí):完成練習(xí)四第4題。

  4、教學(xué)例3.

 。1)出示例3

  已知近似于圓錐形的沙堆的底面直徑和高,求這堆沙堆的的體積。

 。2)要求沙堆的體積需要已知哪些條件?(由于這堆沙堆近似圓錐形,所以可利用圓錐的體積公式來求,需先已知沙堆的底面積和高)

  (3)題目的條件中不知道圓錐的底面積,應(yīng)該怎么辦?(先算出沙堆的底面半徑,再利用圓的面積公式算出麥堆的底面積,然后根據(jù)圓錐的體積公式求出沙堆的體積)

 。4)分析完后,指定兩名學(xué)生板演,其余學(xué)生將計(jì)算步驟寫在教科書第26頁上.做完后集體訂正。(注意學(xué)生最后得數(shù)的取舍方法是否正確)

  三、鞏固練習(xí)

  1、做練習(xí)四的第7題。

  學(xué)生先獨(dú)立判斷這三句話是否正確,然后全般核對評講。

  2、做練習(xí)四的第8題。

  (1)引導(dǎo)學(xué)生學(xué)生思考回答以下問題:

 、 這道題已知什么?求什么?

 、 求圓錐的體積必須知道什么?

  ③ 求出這堆煤的體積后,應(yīng)該怎樣計(jì)算這堆煤的'重量?

  (2)讓學(xué)生做在練習(xí)本上,教師巡視,做完后集體訂正。

  3、做練習(xí)四的第6題。

  (1)指名學(xué)生先后回答下面問題:

 、 圓柱的側(cè)面積等于多少?

 、 圓柱的表面積的含義是什么?怎樣計(jì)算?

 、 圓柱體積的計(jì)算公式是什么?

 、 圓錐的體積公式是什么?

 。2)學(xué)生把計(jì)算結(jié)果填寫在教科書第28頁的表格中,做完后集體訂正。

  四、總結(jié)

  這節(jié)課學(xué)習(xí)了哪些內(nèi)容?你是如何準(zhǔn)確地記住圓錐的體積公式的?

  第七課時教學(xué)反思

  課件演示

  俗話說“眼見為實(shí)”,所以相對于課件演示而言,教師在全班演示會更直觀,結(jié)論也更具信服性。

  俗話又說“紙上得來終覺淺,絕知此事要躬行”,所以相對于看教師演示與自己親自動手實(shí)驗(yàn),親身經(jīng)歷探究印象會更深刻。

  課堂如果以4——6人小組為單位進(jìn)行實(shí)驗(yàn),全班至少得有9套以上教具?晌倚,F(xiàn)有教具數(shù)量不夠。如果要求學(xué)生課前自制教具,他們暫時無法制作出與圓柱等底等高高的圓錐。所以只好改為教師演示,學(xué)生觀察。

  僅用一次實(shí)驗(yàn)就得出結(jié)論是不嚴(yán)謹(jǐn)?shù),所以課堂上必須讓學(xué)生歷經(jīng)多次不同實(shí)驗(yàn)后才能得到正確結(jié)論。根據(jù)學(xué),F(xiàn)有教具,今天我準(zhǔn)備了兩套不同大小的等底等高圓柱、圓錐作為器材。在實(shí)驗(yàn)中,我不僅讓學(xué)生清晰地看到將圓錐內(nèi)的水倒3次可以注滿與它等底等高的圓柱,同時,還讓他們看到圓柱內(nèi)的水再反倒回等底等高的圓錐時要倒3次。不僅自己示范演示,也讓學(xué)生參與演示實(shí)驗(yàn)。最后,我還用不等底等高的圓柱與圓錐做實(shí)驗(yàn),強(qiáng)調(diào)實(shí)驗(yàn)結(jié)果只有在“等底等高”的條件下才能成立。因?yàn)閷?shí)驗(yàn)環(huán)節(jié)落實(shí)較好,全班作業(yè)正確率高。

《圓錐的體積》教案11

  教學(xué)內(nèi)容:

  練習(xí)四第4~12題和第23頁思考題

  教學(xué)目標(biāo):

  1.使學(xué)生進(jìn)步理解、掌握圓錐的體積計(jì)算方法,能根據(jù)不同的條件計(jì)算出圓錐的體積。

  2.提高學(xué)生解決生活中實(shí)際問題的能力。

  3.養(yǎng)成良好的學(xué)習(xí)習(xí)慣。

  教學(xué)重點(diǎn):

  進(jìn)步掌握圓錐體積的計(jì)算方法。

  教學(xué)難點(diǎn):

  圓柱和圓錐體積之間的聯(lián)系與區(qū)別。

  教學(xué)過程:

  一、復(fù)習(xí)舊知

  1.復(fù)習(xí)體積計(jì)算。

 。1)提問:圓錐的體積怎樣計(jì)算?

  (2)口答下列各圓錐的體積。

 、俚酌娣e3平方分米,高2分米。

  ②底面積4平方厘米,高4.5厘米。

  2.引入新課。

  今天這節(jié)課,我們練習(xí)圓錐體積的計(jì)算,通過練習(xí),還要能應(yīng)用圓錐體積計(jì)算的方法解決一些簡單的實(shí)際問題。

  二、教學(xué)新課

  組織練習(xí)。

  1.做練習(xí)四第4題。

  學(xué)生獨(dú)立計(jì)算。

  2.做練習(xí)四第5題。

  把等底等高的圓柱體積和圓錐體積相互轉(zhuǎn)化,從已知的圓柱體積得出相應(yīng)的圓錐體積,從已知的圓錐體積得出相應(yīng)的圓柱體積,繼續(xù)加強(qiáng)對等底等高圓柱和圓錐體積關(guān)系的`理解。

  3.做練習(xí)四第6題。

  出示第6題的圖。

  引導(dǎo)分析:根據(jù)圖示的各個立體圖形的底面直徑與高,尋找與圓錐體積相等的圓柱,可以從圓錐體積是等底等高圓柱體積的1/3,推理出體積相等的圓柱與圓錐,如果底面積相等,圓錐的高是圓柱的3倍圓柱的高是圓錐的1/3;如果高相等,圓錐的底面積是圓柱的3倍圓柱的底面積是圓錐的1/3。還要注意到,大圓的直徑是小圓的3倍小圓直徑是大圓的1/3,大圓的面積則是小圓的9倍小圓的面積是大圓的1/9。

  4.做練習(xí)四第7題。

 。1)提問:圓錐體積最大時與圓柱的關(guān)系是什么?(等底等高)

  接著讓學(xué)生獨(dú)立練習(xí)。

 。2)讓學(xué)生自主地提出其他問題,進(jìn)一步的掌握圓錐和圓柱的關(guān)系。

  5.做練習(xí)四第8題。

  聯(lián)系實(shí)際,解決問題。

  6.做練習(xí)四第9題。

  讓學(xué)生動手操作,理解三角形繞它的兩條高旋轉(zhuǎn)一周形成兩個大小不同的圓錐。在此基礎(chǔ)上讓學(xué)生獨(dú)立計(jì)算。

  7.做練習(xí)四第12題。

  出示圓錐形模型,提問:你有什么辦法算山它的體積嗎,需要測量哪些數(shù)據(jù)?怎樣測量直徑和高。請同學(xué)們回去測量你用第115頁圖制作的圓錐,求出它的體積來。

  三、課堂小結(jié)

  這節(jié)課練習(xí)了圓錐的體積計(jì)算和應(yīng)用:計(jì)算體積需要知道底面積和高。如果沒有告訴底面積,我們要先求半徑算出底面積,再計(jì)算體積。應(yīng)用圓錐體積計(jì)算方法,有時候還可以計(jì)算出圓錐形物休的重量。

  四、布置作業(yè)

  1.練習(xí)四第10.11題。

  2.學(xué)有余力學(xué)生完成思考題。

《圓錐的體積》教案12

  教學(xué)目標(biāo)

  1、推導(dǎo)出圓錐體積的計(jì)算公式。

  2、會運(yùn)用圓錐的體積公式計(jì)算圓錐的體積。

  重點(diǎn)難點(diǎn)

  圓錐體積公式的推導(dǎo)過程。

  教學(xué)過程

  一、板書課題

  師:同學(xué)們,今天我們來學(xué)習(xí)“圓錐的體積”(板書課題)。

  二、出示目標(biāo)

  理解并掌握圓錐的體積計(jì)算公式,并能運(yùn)用公式解決實(shí)際問題。

  三、自學(xué)指導(dǎo)

  認(rèn)真看課本第33頁到第34頁的例2和例3,邊看書,邊實(shí)驗(yàn),理解圓錐的體積計(jì)算方法,并將例3補(bǔ)充完整。想:

  1、圓錐的體積與圓柱的.體積有什么關(guān)系?

  2、圓錐的體積計(jì)算公式是什么?用字母如何表示?

  5分鐘后,比誰能正確地回答思考題并能做對檢測題!

  檢測題

  完成課本第34頁“做一做”第1、2題。

  小組合作,校正答案

  后教

  口答

  一個體積是1413立方分米的鐵塊,可以制造成多少個底面半徑是3分米、高是5分米的圓錐形零件?

  小組內(nèi)互相說。

  當(dāng)堂訓(xùn)練

  1、必做題:

  課本第35頁第5、6、7題。(做在作業(yè)本上)

  2、選做題:

  有一個近似圓錐形的沙堆,底面周長是12.56米,高1.2米。把這些沙鋪在一個長4米、寬3米的長方形沙坑里,可以鋪多厚?(得數(shù)保留兩位小數(shù))

《圓錐的體積》教案13

  一、 教學(xué)內(nèi)容

  九年義務(wù)教育六年制小學(xué)教科書《數(shù)學(xué)》(第一版)六年級第十二冊第二單元。

  二、 教材分析

  1、內(nèi)容分析:這是本單元實(shí)驗(yàn)探究性較強(qiáng)的知識點(diǎn),通過學(xué)生合作探究,理解并掌握圓錐體積的計(jì)算方法,且能加以運(yùn)用。

  2、教學(xué)重點(diǎn):正確運(yùn)用公式計(jì)算圓錐的體積,學(xué)會解決與計(jì)算圓錐形物體有關(guān)的實(shí)際問題。

  3、教學(xué)難點(diǎn):理解圓錐體積公式的推導(dǎo)。

  三、 教學(xué)目標(biāo)

  1、知識教學(xué)點(diǎn):讓學(xué)生通過觀察、親自動手做對比實(shí)驗(yàn)、分析、驗(yàn)證等活動,初步感知圓錐的體積計(jì)算公式的由來,能理解并加以運(yùn)用。

  2、能力訓(xùn)練點(diǎn):培養(yǎng)學(xué)生的觀察、比較、分析、綜合、概括以及初步的自主探究的能力。

  3、思想滲透點(diǎn):激發(fā)學(xué)生積極探索新知和學(xué)習(xí)數(shù)學(xué)的欲望。

  四、 教、學(xué)具準(zhǔn)備

  1、教具:量筒(2只)、圓柱和圓錐(等底等高,可裝水)、紅顏色的水、不規(guī)則的石塊。

  2、學(xué)具:教師指導(dǎo)用硬塑料紙做3組可盛水的圓柱和圓錐(①等底等高 ②等底不等高 ③等高不等底)、適量的水。

  五、 教學(xué)過程

 。ㄒ唬 創(chuàng)設(shè)探究情景,激趣引思

  1、教師行為

 。1) 談話:同學(xué)們探究了計(jì)算圓柱體積的方法。想不想探究圓錐體積的計(jì)算方法呢?今天我們用準(zhǔn)備好的學(xué)具試一試!

 。2) 演示實(shí)驗(yàn):先出示實(shí)驗(yàn)器材,讓學(xué)生細(xì)心觀察比較;在空圓柱里裝滿紅顏色的水,然后倒入一只量筒里;在空圓錐里裝滿紅顏色的水,倒入另一只量筒里,像這樣倒三次。

 。3) 質(zhì)疑: 通過老師做實(shí)驗(yàn),同學(xué)們看到了什么?想到了什么?發(fā)現(xiàn)了什么?有什么感想?

  2、學(xué)生活動

  (1) 聽談話,明確主題。

  (2) 細(xì)致入微地觀察演示實(shí)驗(yàn)。

  (3) 四人小組合作討論交流,看到的、想到的。并分組匯報(bào)討論結(jié)果。(兩只一樣的'量筒里水面高度一樣,用空圓錐倒了三次水,空圓柱倒了一次,它們的底面大小及高度一樣,兩只量筒里水的體積相等、空圓錐裝三次的水與空圓柱裝一次的水一樣多等)。

  (4) 親自用教師演示用具驗(yàn)證討論結(jié)果。

 。ㄔO(shè)計(jì)意圖:通過演示實(shí)驗(yàn)激發(fā)學(xué)生的探究興趣,激活學(xué)生思維。)

 。ǘ 提出探究假想,實(shí)踐驗(yàn)證

  1、教師行為

  (。﹩⒌希豪蠋熥龅膶(shí)驗(yàn)對我們今天的探究活動有什么啟發(fā)?請同學(xué)們提出自己的設(shè)想,并給予各組學(xué)生必要的指導(dǎo),進(jìn)行小組討論。

 。2)綜述討論結(jié)果,提問:所有圓柱的體積都等于圓錐體積的3倍,圓錐體積都等于圓柱體積的1/3,是否正確,為什么?有什么條件限制?再讓學(xué)生觀察老師用的實(shí)驗(yàn)器具思考。

  (3)促思:同學(xué)們設(shè)想的條件哪一種正確?大家沒有量筒,用你們準(zhǔn)備的

  學(xué)具怎樣才能驗(yàn)證假設(shè)?

  (4)合作探究:創(chuàng)新驗(yàn)證方案,怎樣讓它具有可操作性,教師適當(dāng)點(diǎn)撥。

  (5)組織學(xué)生用確定的方案進(jìn)行合作探究,實(shí)踐驗(yàn)證。

 。6)誘導(dǎo):修正假設(shè),反思結(jié)果,得出結(jié)論,層層深入。

  2、學(xué)生活動

  (1)小組討論,積極交流,達(dá)成共識。

 。2)分組匯報(bào)討論結(jié)果:對今天的學(xué)習(xí)有幫助,假設(shè)空圓柱和空圓錐里裝水的體積近似等于它們的體積;則老師所用的空圓柱的體積將等于空圓錐體積的3倍,空圓錐的體積就等于空圓柱體積的1/3。

  (3)根據(jù)問題設(shè)想條件:圓柱和圓錐、等底等高、等底不等高、等高不等底。

 。4)交流確定驗(yàn)證方案:分別用三組準(zhǔn)備好的空圓錐裝滿水倒入空圓柱里,看哪一組裝3次剛好裝滿。

 。5)分組實(shí)驗(yàn)。

 。6)匯報(bào)探究情況:等底等高的一組空圓柱和空圓錐才符合原先假設(shè)。

 。7)小結(jié):圓柱的體積等于和它等底等高的圓錐體積的3倍;圓錐體積等于和它等底等高的圓柱體積的1/3.即

  V柱=1/3 V錐=1/3 sh=1/3 ∏r2h

  (設(shè)計(jì)意圖:培養(yǎng)學(xué)生的分析能力和自主探究學(xué)習(xí)的能力。)

  (三)鞏固探究成果,深化理解

  1、教師行為

  (1) 鞏固新知:讓學(xué)生計(jì)算課本例1、例2、做一做,然后集體訂正。

  (2) 強(qiáng)調(diào):計(jì)算圓錐體積時,最容易出現(xiàn)的錯誤是什么?

  (3) 引申練習(xí):一個圓錐形零件,已知下列條件,分別求其體積

 、俚酌姘霃3厘米,高15厘米;

 、诘酌嬷睆5厘米,高10厘米;

 、鄣酌嬷荛L12.56厘米,高10厘米;

  ④底面半徑3厘米,比高少70%。

  2、學(xué)生活動

 。1)自主訓(xùn)練,多思多問。

  (2)總結(jié):計(jì)算時,不能忘記特殊數(shù)字“1/3”

  (3)靈活運(yùn)用公式,找出自己知識的不足。

  (設(shè)計(jì)意圖:運(yùn)用探究成果進(jìn)行強(qiáng)化練習(xí),加深對知識的理解,培養(yǎng)學(xué)生綜合運(yùn)用能力。)

 。ㄋ模 拓展探究思維,邁向生活

  1、教師行為

  質(zhì)疑:

  (1)出示一個不規(guī)則滑石塊,怎樣求其體積?(教師作指導(dǎo))

  (2)學(xué)校食堂買來一車煤炭,倒堆成圓錐體,量得其底面周長和高分別為12.56米,每立方米煤200元,結(jié)果付了1300元,問學(xué)校有沒有多花錢?

  2、學(xué)生活動

  (1)分組討論,引導(dǎo)得出求其體積的方法:把不規(guī)則的物體(不吸水)放進(jìn)盛水的容器里,求出上升那部分水的體積也就等于不規(guī)則物體的體積。

 。2)合作探討明確計(jì)算方法。

  (設(shè)計(jì)意圖:解決生活中的實(shí)際問題,體現(xiàn)“人人學(xué)有價(jià)值的數(shù)學(xué),不同的人在數(shù)學(xué)上得到不同的發(fā)展”的新課程理念,培養(yǎng)學(xué)生的創(chuàng)新意識和實(shí)踐能力。)

  教學(xué)反思:

  立足教材,根據(jù)本地區(qū)挖掘?qū)W生較熟悉的、樂于接受的、具有多方面教育價(jià)值,能引起學(xué)生思考的素材,真正實(shí)現(xiàn)用教材,并加以創(chuàng)新,讓探究成功率提高,激起了學(xué)生的學(xué)習(xí)興趣。在課堂教學(xué)中充分發(fā)揮學(xué)生的主體性,構(gòu)建了“激趣引思——實(shí)踐驗(yàn)證——深化理解——邁向生活”的教學(xué)模式,促進(jìn)了學(xué)生學(xué)習(xí)方式的轉(zhuǎn)變。]

  教學(xué)評析:

  教師充分利用教學(xué)用具,開發(fā)數(shù)學(xué)課程資源,讓學(xué)生在探究新知的過程中,進(jìn)一步發(fā)展空間觀念和應(yīng)用數(shù)學(xué)的能力,實(shí)現(xiàn)了讓學(xué)生在生活中學(xué)數(shù)學(xué)、用數(shù)學(xué)的愿望。

  在教學(xué)過程中與學(xué)生積極互動,共同發(fā)展,處理好傳授知識與培養(yǎng)能力的關(guān)系,注重培養(yǎng)學(xué)生的獨(dú)立性和自主性,引導(dǎo)學(xué)生觀察、質(zhì)疑、探究,在實(shí)踐中學(xué)習(xí),促進(jìn)學(xué)生在教師指導(dǎo)下主動地、富有個性的學(xué)習(xí),以學(xué)生為本,以問題為中心,以實(shí)驗(yàn)探索為主要手段,以討論為交流方式,以陳述觀點(diǎn)及根據(jù)為要求,把學(xué)生推到了探究性學(xué)習(xí)的前臺,讓學(xué)生去想、去說、去做、去表達(dá),去自我評價(jià)、去體會科學(xué)知識的真諦,促進(jìn)學(xué)生全面發(fā)展。

《圓錐的體積》教案14

  教學(xué)內(nèi)容:

  教材第11~17頁圓錐的認(rèn)識和體積計(jì)算、例1。

  教學(xué)要求:

  l.使學(xué)生認(rèn)識圓錐的特征和各部分名稱,掌握高的特征,知道測量圓錐高的方法。

  2.使學(xué)生理解和掌握圓錐體積的計(jì)算公式,并能正確地求出圓錐的體積。

  3.培養(yǎng)學(xué)生初步的空間觀念和發(fā)展學(xué)生的思維能力。

  教具準(zhǔn)備:

  長方體、正方體、圓柱體等,根據(jù)教材第167頁自制的圓錐,演示測高、等底、等高的教具,演示得出圓錐體積等于等底等高圓柱體積的 的教具。

  教學(xué)重點(diǎn):

  掌握圓錐的特征。

  教學(xué)難點(diǎn):

  理解和掌握圓錐體積的計(jì)算公式。

  教學(xué)過程:

  一、鋪墊孕伏:

  1. 說出圓柱的體積計(jì)算公式。

  2. 我們已經(jīng)學(xué)過了長方體、正方體及圓柱體(邊說邊出示實(shí)物圖形)。在日常生活和生產(chǎn)中,我們還常常看到下面一些物體(出示教材第16頁插圖)。這些物體的形狀都是圓錐體,簡稱圓錐。我們教材中所講的圓錐,都是直圓錐。今天這節(jié)課,就學(xué)習(xí)圓錐和圓錐的體積。(板書課題)

  二、自主探究:

  1.認(rèn)識圓錐。

  我們在日常生活中,還見過哪些物體是這樣的圓錐體,誰能舉出一些例子?

  2.根據(jù)教材第16頁插圖,和學(xué)生舉的例子通過幻燈片或其他方法抽象出立體圖。

  3.利用學(xué)生課前做好的圓錐體及立體圖通過觀察、手摸認(rèn)識圓錐的特點(diǎn)。

  (1) 圓錐的底面是個圓,圓錐的側(cè)面是一個曲面。

  (2) 認(rèn)識圓錐的頂點(diǎn),從圓錐的頂點(diǎn)到底面圓心的距離是圓錐的高。(在圖上表示出這條高)提問:圖里畫的這條高和底面圓的所有直徑有什么關(guān)系?

  4.學(xué)生練習(xí)。

  口答練習(xí)三第1題。

  5.教學(xué)圓錐高的測量方法。(見課本第17頁有關(guān)內(nèi)容)

  6.讓學(xué)生根據(jù)上述方法測量自制圓錐的高。

  7.實(shí)驗(yàn)操作、推導(dǎo)圓錐體積計(jì)算公式。

  (1)通過演示使學(xué)生知道什么叫等底等高。(具體方法可見教材第18頁上面的圖)

  (2)讓學(xué)生猜想:老師手中的圓錐和圓柱等底等高,你能猜想一下它們體積之間有怎樣的關(guān)系?

  (3)實(shí)驗(yàn)操作,發(fā)現(xiàn)規(guī)律。

  在空圓錐里裝滿黃沙,然后倒入空圓柱里,看看倒幾次正好裝滿。(用有色水演示也可)從倒的次數(shù)看,你發(fā)現(xiàn)圓錐體積與等底等高的圓柱體積之間有怎樣的`關(guān)系?得出圓錐的體積是與它等底等高的圓柱體體積的 。

  老師把圓柱里的黃沙倒進(jìn)圓錐,問:把圓柱內(nèi)的沙往圓錐內(nèi)倒三次倒光,你又發(fā)現(xiàn)什么規(guī)律?

  (4)是不是所有的圓柱和圓錐都有這樣的關(guān)系?教師可出示不等底不等高的圓錐、圓柱,讓學(xué)生通過觀察實(shí)驗(yàn),得出只有等底等高的圓錐才是圓柱體積的 。

  (5)啟發(fā)引導(dǎo)推導(dǎo)出計(jì)算公式并用字母表示。

  圓錐的體積=等底等高的圓柱的體積13=底面積高13

  用字母表示:V= 13 Sh

  (6)小結(jié):要求圓錐體積必須知道哪些條件,公式中的底面積乘以高,求的是什么?為什么要乘以 13 ?

  8.教學(xué)例l

  (1)出示例1

  (2)審題后可讓學(xué)生根據(jù)圓錐體積計(jì)算公式自己試做。

  (3)批改講評。注意些什么問題。

《圓錐的體積》教案15

  教學(xué)目的:使學(xué)生系統(tǒng)掌握關(guān)于圓柱和圓錐的基礎(chǔ)知識,進(jìn)一步了解圓柱和圓錐的關(guān)系,熟練運(yùn)用所學(xué)公式計(jì)算解答實(shí)際問題;

  教學(xué)準(zhǔn)備:幻燈片、電腦制圖

  教學(xué)過程:

  一. 出示課題,引人復(fù)習(xí)內(nèi)容;

  1.同學(xué)們,今天這節(jié)課,我們要進(jìn)行圓柱體和圓錐體體積的復(fù)習(xí);

  板書課題

  2.圓柱體的體積怎么求?

  板書:V圓柱=Sh

  3.圓錐體的體積怎么求?

  板書:V圓錐=1/3 Sh

  4.公式中的 s、h分別表示什么?1/3表示什么?

  小結(jié):求圓柱體和圓錐體的體積,首先要正確應(yīng)用公式。

  板書:1.正確應(yīng)用公式

  當(dāng)題目中沒有直接告訴我們底面積,只給出底面的半徑、直徑或周長時,求它們的體積必須先求出什么?

  二. 基礎(chǔ)練習(xí)

  根據(jù)已知條件求圓柱體和圓錐體的底面積(幻燈出示)

  計(jì)算這些形體的體積:

  (1)S底=1.5 平方米 h=5 米 求V圓柱

  (2)S底=1.5 平方米 h=5 米 求V圓錐

  (3)r=10分米 h=2 米 求V圓柱

  (4)C=6.28米 h=6 米 求V圓錐

  (1)、 (2)兩題條件相同,所求不同;

  板書:2. 圓錐體積一定要乘 1/3

  (3)、 (4)兩題都要先求出底面積;

  板書:3. 單位名稱要統(tǒng)一

  三. 實(shí)際應(yīng)用練習(xí):

  我們還可應(yīng)用到生活中去解決一些實(shí)際問題:(幻燈出示)

  1.一根圓柱形鋼材長2米,底面周長為6.28厘米,如果1立方厘米鋼重8克,100根這樣的鋼材重多少千克?

  默讀后問同學(xué):做這道題前有沒有準(zhǔn)備工作要做?(單位要統(tǒng)一)

  2.一個圓錐形麥堆,底面直徑4米,高1.5米,按每立方米麥重700千克算,這堆麥重多少千克?

  默讀后問同學(xué):要注意麥堆是什么形狀?

  請兩位同學(xué)板演,其余在本子上自練;

  3.小結(jié):在解這兩題時都用到了什么計(jì)算?

  四. 提高練習(xí):

  (幻燈出示)在一只底面半徑為30厘米的.圓柱形水桶里,放入一段底面半徑為10厘米的圓錐形鋼材,水面升高了5厘米,這段鋼材高為多少?

 。娔X出示圖案)觀察水面變化情況,求什么?

  1.鋼材是什么形狀?求圓錐體的高用什么方法?h=3V/S,3V表示什么?

  2. S可以通過哪個條件求?( r=10厘米)

  3.體積是什么呢?(電腦屏幕逐步演示)

  (1)當(dāng)鋼材放入時水面上升,取出時水面下降,和什么有關(guān)?

  (2)放入時水面為什么會上升?

  (3)圓錐體占據(jù)了水桶里哪一部分水的體積?

  (4)上升的水的體積等于什么?

  (5)求圓錐形鋼材的體積就是求什么?

  (6)求這部分水的體積可通過哪些條件求?(r=30厘米,h=5厘米)

  (7)板演,同學(xué)自練;

  五. 圓柱體、圓錐體之間的關(guān)系是很密切的,下面我們來研究一下:(電腦出示畫面、公式)

  1.當(dāng)圓柱體與圓錐體等底等高時,圓柱的體積是圓錐體積的3倍;(逆向)

  2.當(dāng)圓柱體與圓錐體體積相等,底面積相等時,圓錐的高是圓柱的3倍;

  3.當(dāng)圓柱體與圓錐體體積相等,高也相等時,圓柱的底面積是圓錐底面積的1/3,圓錐底面積是圓柱底面積的3倍。

  六、總結(jié):

  這節(jié)課我們復(fù)習(xí)了什么?

【《圓錐的體積》教案】相關(guān)文章:

[經(jīng)典]圓錐的體積教案11-17

圓錐的體積教案02-13

圓錐的體積01-16

圓錐的體積教案(15篇)02-24

圓錐的體積教案15篇02-14

《圓錐的體積》說課稿02-16

圓錐的體積說課稿07-02

《圓錐的體積》教案精華(2篇)09-04

圓錐的體積教學(xué)反思03-23