八年級數學教案
作為一位不辭辛勞的人民教師,時常會需要準備好教案,教案是保證教學取得成功、提高教學質量的基本條件。那么大家知道正規(guī)的教案是怎么寫的嗎?以下是小編整理的八年級數學教案,希望能夠幫助到大家。
八年級數學教案1
菱形
學習目標(學習重點):
1.經歷探索菱形的識別方法的過程,在活動中培養(yǎng)探究意識與合作交流的習慣;
2.運用菱形的識別方法進行有關推理.
補充例題:
例1. 如圖,在△ABC中,AD是△ABC的角平分線。DE∥AC交AB于E,DF∥AB交AC于F.四邊形AEDF是菱形嗎?說明你的理由.
例2.如圖,平行四邊形ABCD的對 角線AC的垂直平分線與邊AD、BC分別交于E、F.
四邊形AFCE是菱形嗎?說明理由.
例3.如圖 , ABCD是矩形紙片,翻折B、D,使BC、AD恰好落在AC上,設F、H分別是B、D落在AC上的兩點,E、G分別是折痕CE、AG與AB、CD的交點
(1)試說明四邊形AECG是平行四邊形;
(2)若AB=4cm,BC=3cm,求線段EF的長;
(3)當矩形兩邊AB、BC具備怎樣的關系時,四邊形AECG是菱形.
課后續(xù)助:
一、填空題
1.如果四邊形ABCD是平行四邊形,加上條件___________________,就可以是矩形;加上條件_______________________,就可以是菱形
2.如圖,D、E、F分別是△ABC的.邊BC、CA、AB上的點,
且DE∥BA,DF∥ CA
(1)要使四邊形AFDE是菱形,則要增加條件______________________
(2)要使四邊形AFDE是矩形,則要增加條件______________________
二、解答題
1.如圖,在□ABCD中 ,若2,判斷□ABCD是矩形還是菱形?并說明理由。
2.如圖 ,平行四邊形A BCD的兩條對角線AC,BD相交于點O,OA=4,OB=3,AB=5.
(1) AC,BD互相垂直嗎?為什么?
(2) 四邊形ABCD是菱形 嗎?
3.如圖,在□ABCD中,已知ADAB,ABC的平分線交AD于E,EF∥AB交BC于F,試問: 四 邊形ABFE是菱形嗎?請說明理由。
4.如圖,把一張矩形的紙ABCD沿對角線BD折疊,使點C落在點E處,BE與AD交于點F.
、徘笞C:ABF≌
⑵若將折疊的圖形恢復原狀,點F與BC邊上的點M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說明理由.
八年級數學教案2
學習目標
1、在同一直角坐標系中,感受圖形上點的坐標變化與圖形的變化(平移、軸對稱、伸長、壓縮)之間的關系并能找出變化規(guī)律。
2、由坐標的變化探索新舊圖形之間的變化。
重點
1、 作某一圖形關于對稱軸的對稱圖形,并能寫出所得圖形相應各點的坐標。
2、 根據軸對稱圖形的特點,已知軸一邊的圖形或坐標確定另一邊的圖形或坐標。
難點
體會極坐標和直角坐標思想,并能解決一些簡單的問題
學習過程(導入、探究新知、即時練習、小結、達標檢測、作業(yè))
第一課時
學習過程:
一、舊知回顧:
1、平面直角坐標系定義:在平面內,兩條____________且有公共_________的數軸組成平面直角坐標系。
2、坐標平面內點的坐標的表示方法____________。
3、各象限點的坐標的特征:
二、新知檢索:
1、在方格紙上描出下列各點(0,0),(5,4),(3,0),(5,1),(5,-1),
(3,0),(4,-2), (0,0)并用線段依次連接,觀察形成了什么圖形
三、典例分析
例1、
(1) 將魚的頂點的縱坐標保持不變,橫坐標分別加5畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果縱坐標保持不變,橫坐標分別減2呢?
(2)將魚的頂點的橫坐標保持不變,縱坐標分別加3畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果橫坐標保持不變,縱坐標減2呢?
例2、(1)將魚的頂點的縱坐標保持不變,橫坐標分別變?yōu)樵瓉淼?倍畫出圖形,分析所得圖形與原來圖形相比有什么變化?
(2)將魚的頂點的橫坐標保持不變,縱坐標分別變?yōu)樵瓉淼?/2畫出圖形,分析所得圖形與原來圖形相比有什么變化?
四、題組訓練
1、在平面直角坐標系中,將坐標為(0,0),(2,4),(2,0),(4,4)的點用線段依次連接起來形成一個圖案。
(1)這四個點的縱坐標保持不變,橫坐標變成原來的1/2,將所得的四個點用線段依次連接起來,所得圖案與原來圖案相比有什么變化?
(2)縱、橫分別加3呢?
(3)縱、橫分別變成原來的2倍呢?
歸納:圖形坐標變化規(guī)律
1、 平移規(guī)律:2、圖形伸長與壓縮:
第二課時
一、舊知回顧:
1、軸對稱圖形定義:如果一個圖形沿著 對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形。
中心對稱圖形定義:在同一平面內,如果把一個圖形繞某一點旋轉 ,旋轉后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形
二、新知檢索:
1、如圖,左邊的魚與右邊的魚關于y軸對稱。
1、左邊的魚能由右邊的魚通過平移、壓縮或拉伸而得到嗎?
2、各個對應頂點的坐標有怎樣的關系?
3、如果將圖中右邊的魚沿x軸正方向平移1個單位長度,為保持整個圖形關于y軸對稱,那么左邊的魚各個頂點的坐標將發(fā)生怎樣的變化?
三、典例分析,如圖所示,
1、右圖的魚是通過什么樣的.變換得到 左圖的魚的。
2、如果將右邊的魚的橫坐標保持不變,縱坐標分別變?yōu)樵瓉淼?倍,畫出圖形,得到的魚與原來的魚有什么樣的位置關系。
3、如果將右邊的魚的縱、橫坐標都分別變?yōu)樵瓉淼?倍,得到的魚與原來的魚有什么樣的位置關系
四、題組練習
1、將坐標作如下變化時,圖形將怎樣變化?
、 (x,y)(x,y+4)② (x,y) (x,y-2)③ (x,y) (1/2x , y)
、 (x,y) (3x , y)⑤ (x,y) (x ,1/2y)⑥ (x,y) (3x , 3y)
2、如圖,在第一象限里有一只蝴蝶,在第二象限里作出一只和它形狀、大小完全一樣的蝴蝶,并寫出第二象限中蝴蝶各個頂點的坐標。
3、 如圖,作字母M關于y軸的軸對稱圖形,并寫出所得圖形相應各端點的坐標。
4、 描出下圖中楓葉圖案關于x軸的軸對稱圖形的簡圖。
學習筆記
八年級數學教案3
一、教學目標:
1、知識目標:能熟練掌握簡單圖形的移動規(guī)律,能按要求作出簡單平面圖形平移后的圖形,能夠探索圖形之間的平移關系;
2、能力目標:
、,在實踐操作過程中,逐步探索圖形之間的平移關系;
、冢瑢M合圖形要找到一個或者幾個“基本圖案”,并能通過對“基本圖案”的平移,復制所求的圖形;
3、情感目標:經歷對圖形進行觀察、分析、欣賞和動手操作、畫圖等過程,發(fā)展初步的審美能力,增強對圖形欣賞的意識。
二、重點與難點:
重點:圖形連續(xù)變化的特點;
難點:圖形的劃分。
三、教學方法:
講練結合。使用多媒體課件輔助教學。
八年級數學上冊教案四、教具準備:
多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。
五、教學設計:
教師活動
學生活動
設計意圖
創(chuàng)設情景,探究新知:
(演示課件):教材上小狗的圖案。提問:(1)這個圖案有什么特點?(2)它可以通過什么“基本圖案”,經過怎樣的平移而形成?(3)在平移過程中,“基本圖案”的大小、形狀、位置是否發(fā)生了變化?
小組討論,派代表回答。(答案可以多種)
讓學生充分討論,歸納總結,老師給予適當的指導,并對每種答案都要肯定。
看磁性黑板,展示教材64頁圖3-9,提問:左圖是一個正六邊形,它經過怎樣的平移能得到右圖?誰到黑板做做看?
展示教材64頁3-10,提問:左圖是一種“工”字形磚,右圖是怎樣通過左圖得到的?
小組討論,派代表到臺上給大家講解。
氣氛要熱烈,充分調動學生的積極性,發(fā)掘他們的想象力。
。ㄑ菔菊n件)教材65頁圖3-11,提問:這個圖可以看做是什么“基本圖案”通過平移得到的?
暢所欲言,互相補充。
課堂小結:
在教師的引導下學生總結本節(jié)課的'主要內容,并啟發(fā)學生在我們周圍尋找平移的例子。
課堂練習:
。ㄑ菔菊n件)教材65頁“隨堂練習”。
小組討論。
小組討論完成。
例子一定要和大家接觸緊密、典型。
答案不惟一,對于每種答案,教師都要給予充分的肯定。
六、教學反思:
本節(jié)的內容并不是很復雜,借助多媒體進行直觀、形象,內容貼近生活,學生興致較高,課堂氣氛活躍,參與意識較強,學生一般都能在教師的指導下掌握。教學過程中滲透數學美學思想,促進學生綜合素質的提高。
八年級數學教案4
一、平移:在平面內,將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。
1.平移
2.平移的性質:
、沤涍^平移,對應點所連的線段平行且相等;
⑵對應線段平行且相等,對應角相等。
、瞧揭撇桓淖儓D形的大小和形狀(只改變圖形的位置)。
(4)平移后的圖形與原圖形全等。
3.簡單的平移作圖
①確定個圖形平移后的位置的條件:
、判枰瓐D形的位置;
、菩枰揭频姆较;
⑶需要平移的距離或一個對應點的位置。
②作平移后的圖形的方法:
、耪页鲫P鍵點;⑵作出這些點平移后的對應點;
、菍⑺鞯膶c按原來方式順次連接,所得的;
二、旋轉:在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉,這個定點稱為旋轉中心,轉動的角稱為旋轉角。
1.旋轉
2.旋轉的性質
、判D變化前后,對應線段,對應角分別相等,圖形的大小,形狀都不改變(只改變圖形的位置)。
、菩D過程中,圖形上每一個點都繞旋轉中心沿相同方向轉動了相同的.角度。
⑶任意一對對應點與旋轉中心的連線所成的角都是旋轉角,對應點到旋轉中心的距離相等。
、刃D前后的兩個圖形全等。
3.簡單的旋轉作圖
、乓阎瓐D,旋轉中心和一對對應點,求作旋轉后的圖形。
、埔阎瓐D,旋轉中心和一對對應線段,求作旋轉后的圖形。
、且阎瓐D,旋轉中心和旋轉角,求作旋轉后的圖形。
三、分析組合圖案的形成
、俅_定組合圖案中的“基本圖案”
、诎l(fā)現該圖案各組成部分之間的內在聯(lián)系
、厶剿髟搱D案的形成過程,類型有:⑴平移變換;⑵旋轉變換;⑶軸對稱變換;⑷旋轉變換與平移變換的組合;
、尚D變換與軸對稱變換的組合;⑹軸對稱變換與平移變換的組合。
八年級數學教案5
一、學情分析
本學期本人繼續(xù)擔任八年級(2)班的數學教學工作,八年級是初中學習過程中的關鍵時期,學生基礎的好壞,直接影響到將來是否能升學。從上期期末考試的成績來看1班、2班的成績差異很大,2班有少數學生不上進,思維不緊跟老師,有部分同學基礎較差,問題較嚴重。要在本期獲得理想成績,老師和學生都要付出努力,查漏補缺,充分發(fā)揮學生是學習的主體,教師是教的主體作用,注重方法,培養(yǎng)能力。
二、教材分析
本學期教學內容共計五章,知識的前后聯(lián)系,教材的教學目標,重、難點分析如下:
第十七章分式
本章的主要內容包括:分式的概念,分式的基本性質,分式的約分與通分,分式的加、減、乘、除運算,整數指數冪的概念及運算性質,分式方程的概念及可化為一元一次方程的分式方程的解法。
第十八章函數及其圖像
函數是研究現實世界變化規(guī)律的一個重要模型,本單元學生在學習了一次函數后,進一步研究反比例函數。學生在本章中經歷:反比例函數概念的抽象概括過程,體會建立數學模型的思想,進一步發(fā)展學生的抽象思維能力;經歷反比例函數的圖象及其性質的探索過程,在交流中發(fā)展能力這是本章的重點之一;經歷本章的重點之二:利用反比例函數及圖象解決實際問題的過程,發(fā)展學生的數學應用能力;經歷函數圖象信息的識別應用過程,發(fā)展學生形象思維;能根據所給信息確定反比例函數表達式,會作反比例函數圖象,并利用它們解決簡單的實際問題。本章的難點在于對學生抽象思維的培養(yǎng),以及提高數形結合的意識和能力。
第十九章全等三角形
本章主要內容是探索三角形全等的判定方法,領略推理證明的奧秘,由于三角形全等的判定方法與全等三角形的性質具有“互逆”的特點,所以本章因勢利導,介紹了命題與定理、逆命題與逆命題的有關知識。此外,本章教材最后還介紹了幾種常用的基本作圖和簡單的尺規(guī)作圖的方法。
第二十章平行四邊形的判定
本章的內容包括平行四邊形的判定;矩形、菱形、正方形等幾種特殊平行四邊形的判定;等腰梯形的判定等幾個部分。本章首先通過回顧平行四邊形的性質,由性質引出判定方法,在此基礎上,學習矩形、菱形、正方形等特殊平行四邊形的判定,最后介紹了等腰梯形的判定與應用。本章知識是在學習了平行線、三角形、平行四邊形的性質等知識的基礎上的進一步深化和提高,是今后學習其他幾何知識的基礎。
第二十一章數據的整理與初步處理
本章主要研究平均數、中位數、眾數以及極差、方差等統(tǒng)計量的統(tǒng)計意義,學習如何利用這些統(tǒng)計量分析數據的集中趨勢和離散情況,并通過研究如何用樣本的平均數和方差估計總體的平均數和方差,進一步體會用樣本估計總體的思想。
三、提高學科教育質量的主要措施:
1、認真做好教學六認真工作。把教學六認真作為提高成績的主要方法,認真研讀新課程標準,鉆研新教材,根據新課程標準,擴充教材內容,認真上課,批改作業(yè),認真輔導,認真制作測試試卷,也讓學生學會認真學習。
2、興趣是最好的老師,愛因斯坦如是說。激發(fā)學生的興趣,給學生介紹數學家,數學史,介紹相應的數學趣題,給出數學課外思考題,激發(fā)學生的興趣。
3、引導學生積極參與知識的構建,營造民主、和諧、平等、自主、探究、合作、交流、分享發(fā)現快樂的高效的學習課堂,讓學生體會學習的快樂,享受學習。引導學生寫小論文,寫復習提綱,使知識來源于學生的'構造。
4、引導學生積極歸納解題規(guī)律,引導學生一題多解,多解歸一,培養(yǎng)學生透過現象看本質,提高學生舉一反三的能力,這是提高學生素質的根本途徑之一,培養(yǎng)學生的發(fā)散思維,讓學生處于一種思如泉涌的狀態(tài)。
5、運用新課程標準的理念指導教學,積極更新自己腦海中固有的教育理念,不同的教育理念將帶來不同的教育效果。
6、培養(yǎng)學生良好的學習習慣,陶行知說:教育就是培養(yǎng)習慣,有助于學生穩(wěn)步提高學習成績,發(fā)展學生的非智力因素,彌補智力上的不足。
7、指導成立“課外興趣小組”的民間組織,開展豐富多彩的課外活動,開展對奧數題的研究,課外調查,操作實踐,帶動班級學生學習數學,同時發(fā)展這一部分學生的特長。
8、開展分層教學,布置作業(yè)設置A、B、C三類分層布置分別適合于差、中、好三類學生,課堂上的提問照顧好好、中、差三類學生,使他們都等到發(fā)展。
9、進行個別輔導,優(yōu)生提升能力,扎實打牢基礎知識,對差生,一些關鍵知識,輔導差生過關,為差生以后的發(fā)展鋪平道路。
10、培養(yǎng)學生學習數學的良好習慣。這些習慣包括:
、僬J真做作業(yè)的習?包括作業(yè)前清理好桌面,作業(yè)后認真檢查;
、陬A習的習慣;
、壅J真看批改后的作業(yè)并及時更正的習慣;
④認真做好課前準備的習慣;
、菰跁献骶P記的習慣;
、尥咨票9軙Y料和學習用品的習慣;
⑦認真閱讀數學教材的習慣。
八年級數學教案6
教學目標:
1.知道負整數指數冪=(a≠0,n是正整數).
2.掌握整數指數冪的運算性質.
3.會用科學計數法表示小于1的數.
教學重點:
掌握整數指數冪的運算性質.
難點:
會用科學計數法表示小于1的數.
情感態(tài)度與價值觀:
通過學習課堂知識使學生懂得任何事物之間是相互聯(lián)系的,理論來源于實踐,服務于實踐.能利用事物之間的類比性解決問題.
教學過程:
一、課堂引入
1.回憶正整數指數冪的運算性質: (1)同底數的冪的乘法:am?an = am+n (m,n是正整數); (2)冪的乘方:(am)n = amn (m,n是正整數); (3)積的乘方:(ab)n = anbn (n是正整數); (4)同底數的冪的除法:am÷an = am?n ( a≠0,m,n是正整數,m>n); (5)商的乘方:()n = (n是正整數);
2.回憶0指數冪的.規(guī)定,即當a≠0時,a0 = 1.
3.你還記得1納米=10?9米,即1納米=米嗎?
4.計算當a≠0時,a3÷a5 ===,另一方面,如果把正整數指數冪的運算性質am÷an = am?n (a≠0,m,n是正整數,m>n)中的m>n這個條件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0).
二、總結: 一般地,數學中規(guī)定: 當n是正整數時,=(a≠0)(注意:適用于m、n可以是全體整數) 教師啟發(fā)學生由特殊情形入手,來看這條性質是否成立. 事實上,隨著指數的取值范圍由正整數推廣到全體整數,前面提到的運算性質都可推廣到整數指數冪;am?an = am+n (m,n是整數)這條性質也是成立的.
三、科學記數法: 我們已經知道,一些較大的數適合用科學記數法表示,有了負整數指數冪后,小于1的正數也可以用科學記數法來表示,例如:0.000012 = 1.2×10?5. 即小于1的正數可以用科學記數法表示為a×10?n的形式,其中a是整數位數只有1位的正數,n是正整數. 啟發(fā)學生由特殊情形入手,比如0.012 = 1.2×10?2,0.0012 = 1.2×10?3,0.00012 = 1.2×10?4,以此發(fā)現其中的規(guī)律,從而有0.0000000012 = 1.2×10?9,即對于一個小于1的正數,如果小數點后到第一個非0數字前有8個0,用科學記數法表示這個數時,10的指數是?9,如果有m個0,則10的指數應該是?m?1.
八年級數學教案7
一、教材分析:
《正方形》這節(jié)課是九年義務教育人教版數學教材八年級下冊第十九章第二節(jié)的內容?v觀整個初中教材,《正方形》是在學生掌握了平行線、三角形、平行四邊形、矩形、菱形等有關知識及簡單圖形的平移和旋轉等平面幾何知識,并且具備有初步的觀察、操作等活動經驗的基礎上出現的。既是前面所學知識的延續(xù),又是對平行四邊形、菱形、矩形進行綜合的不可缺少的重要環(huán)節(jié)。
本節(jié)課的重點是正方形的概念和性質,難點是理解正方形與平行四邊形、矩形、菱形之間的內在聯(lián)系。根據大綱要求,本節(jié)課制定了知識、能力、情感三方面的目標。
(一)知識目標:
1、要求學生掌握正方形的概念及性質;
2、能正確運用正方形的性質進行簡單的計算、推理、論證;
。ǘ┠芰δ繕耍
1、通過本節(jié)課培養(yǎng)學生觀察、動手、探究、分析、歸納、總結等能力;
2、發(fā)展學生合情推理意識,主動探究的習慣,逐步掌握說理的基本方法;
。ㄈ┣楦心繕耍
1、讓學生樹立科學、嚴謹、理論聯(lián)系實際的.良好學風;
2、培養(yǎng)學生互相幫助、團結協(xié)作、相互討論的團隊精神;
3、通過正方形圖形的完美性,培養(yǎng)學生品格的完美性。
二、學生分析:
該段學生具有一定的獨立思考和探究的能力,但語言表達能力方面稍有欠缺,所以在本節(jié)課的教學過程中,特意設計了讓學生自己組織語言培養(yǎng)說理能力,讓學生們能逐步提高。
三、教法分析:
針對本節(jié)課的特點,采用"實踐--觀察--總結歸納--運用"為主線的教學方法。
通過學生動手,采取幾種不同的方法構造出正方形,然后引導學生探究正方形的概念。通過觀察、討論、歸納、總結出正方形性質定理,最后以課堂練習加以鞏固定理,并通過一道拔高題對定義、性質理解、鞏固加以升華。
四、學法分析:
本節(jié)課重點是從培養(yǎng)學生探索精神和分析歸納總結能力為出發(fā)點,著重指導學生動手、觀察、思考、分析、總結得出結論。在小組討論中通過互相學習,讓學生體驗合作學習的樂趣。
五、教學程序:
第一環(huán)節(jié):相關知識回顧
以提問的形式復習平行四邊形、矩形、菱形的定義及性質之后,引導學生發(fā)現矩形、菱形的實質是由平行四邊形角度、邊長的變化得到的。并啟發(fā)學生考慮,若這兩種變化同時發(fā)生在平行四邊形上,則會得到什么樣的圖形?讓學生們通過手上的學具演示以上兩種變化,從而得出結論。
第二環(huán)節(jié):新課講解通過學生們的發(fā)現引出課題“正方形”
1、正方形的定義:引導學生說出自己變化出正方形的過程,并再次利用課件形象演示出由平行四邊形的邊、角的變化演變出正方形的過程。請同學們舉手發(fā)言,歸納總結出正方形定義:一組鄰邊相等,且一個角是直角的平行四邊形是正方形。再由此定義啟發(fā)學生們發(fā)現正方形的三個必要條件,并且由這三個條件通過重新組合即一組鄰邊相等與平行四邊形組成菱形再加上一個角是直角可得到正方形的另兩個定義:一個角是直角的菱形是正方形;一組鄰邊相等的矩形是正方形。此內容借助課件演示其變化過程,進一步啟發(fā)學生發(fā)現,正方形既是特殊的菱形,又是特殊的矩形,從而總結出正方形的性質。
2、正方形的性質定理1:正方形的四個角都是直角,四條邊都相等;
定理2:正方形的兩條對角線相等,并且互相垂直、平分,每條對角線平分一組對角。
以上是對正方形定義和性質的學習,之后是進行例題講解。
3、例題講解:求證:正方形的兩條對角線把正方形分成四個全等的等腰直角三角形。此題是文字證明題,由學生們分組相互探討,共同研究此題的已知、求證部分,然后由小組派代表闡述證明過程,教師板書,在板書的過程中,請其它小組的同學提出合理化建議,使此題證明過程條理更加清晰,更加符合邏輯,同時強調證明格式的書寫。從而培養(yǎng)他們語言表達能力,讓學生的個性得到充分的展示
4、課堂練習:第一部分采用三道有關正方形的周長、面積、對角線、邊長計算的填空題,目的是對正方形性質的進一步理解,并考察學生掌握的情況。
第二部分是選擇題,通過體現生活中實際問題,來提升學生所學的知識,并加以綜合練習,提高他們的綜合素質,使他們充分認識到數學實質是來源于生活并要服務于生活。
5、課堂小結:此環(huán)節(jié)我是通過圖框的形式小結正方形和前階段所學特殊四邊形之間的內在聯(lián)系,通過對所學幾種四邊形內在聯(lián)系體現正方形完美的本質,渲染學生們應追求象正方形一樣方正的品質,從而要努力學習以豐富的知識充實自己,達到理想中的完美。
6、作業(yè)設計:作業(yè)是教材159頁,第12、14兩小道證明題,通過此作業(yè)讓同學們進一步鞏固有關正方形的知識。
八年級數學教案8
教學目標:
知識目標:
1、初步掌握函數概念,能判斷兩個變量間的關系是否可看作函數。
2、根據兩個變量間的關系式,給定其中一個量,相應地會求出另一個量的值。
3、會對一個具體實例進行概括抽象成為數學問題。
能力目標:
1、通過函數概念,初步形成學生利用函數的觀點認識現實世界的意識和能力。
2、經歷具體實例的抽象概括過程,進一步發(fā)展學生的抽象思維能力。
情感目標:
1、經歷函數概念的抽象概括過程,體會函數的模型思想。
2、讓學生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數學知識的理解和有效的學習模式。
教學重點:
掌握函數概念。
判斷兩個變量之間的關系是否可看作函數。
能把實際問題抽象概括為函數問題。
教學難點:
理解函數的概念。
能把實際問題抽象概括為函數問題。
教學過程設計:
一、創(chuàng)設問題情境,導入新課
『師』:同學們,你們看下圖上面那個像車輪狀的物體是什么?
『生』:摩天輪。
『師』:你們坐過嗎?
……
『師』:當你坐在摩天輪上時,人的高度隨時在變化,那么變化是否有規(guī)律呢?
『生』:應該有規(guī)律。因為人隨輪一直做圓周運動。所以人的高度過一段時間就會重復依次,即轉動一圈高度就重復一次。
『師』:分析有道理。摩天輪上一點的高度h與旋轉時間t之間有一定的關系。請看下圖,反映了旋轉時間t(分)與摩天輪上一點的高度h(米)之間的關系。
大家從圖上可以看出,每過6分鐘摩天輪就轉一圈。高度h完整地變化一次。而且從圖中大致可以判斷給定的時間所對應的'高度h。下面根據圖5-1進行填表:
t/分 0 1 2 3 4 5 …… h/米
t/分 0 1 2 3 4 5 …… h/米 3 11 37 45 37 11 ……
『師』:對于給定的時間t,相應的高度h確定嗎?
『生』:確定。
『師』:在這個問題中,我們研究的對象有幾個?分別是什么?
『生』:研究的對象有兩個,是時間t和高度h。
『師』:生活中充滿著許許多多變化的量,你了解這些變量之間的關系嗎?如:彈簧的長度與所掛物體的質量,路程的距離與所用時間……了解這些關系,可以幫助我們更好地認識世界。下面我們就去研究一些有關變量的問題。
二、新課學習
做一做
。1)瓶子或罐子盒等圓柱形的物體,常常如下圖那樣堆放,隨著層數的增加,物體的總數是如何變化的?
填寫下表:
層數n 1 2 3 4 5 … 物體總數y 1 3 6 10 15 … 『師』:在這個問題中的變量有幾個?分別師什么?
『生』:變量有兩個,是層數與圓圈總數。
(2)在平整的路面上,某型號汽車緊急剎車后仍將滑行S米,一般地有經驗公式,其中V表示剎車前汽車的速度(單位:千米/時)
①計算當fenbie為50,60,100時,相應的滑行距離S是多少?
、诮o定一個V值,你能求出相應的S值嗎?
解:略
議一議
『師』:在上面我們研究了三個問題。下面大家探討一下,在這三個問題中的共同點是什么?不同點又是什么?
『生』:相同點是:這三個問題中都研究了兩個變量。
不同點是:在第一個問題中,是以圖象的形式表示兩個變量之間的關系;第二個問題中是以表格的形式表示兩個變量間的關系;第三個問題是以關系式來表示兩個變量間的關系的。
『師』:通過對這三個問題的研究,明確“給定其中某一個變量的值,相應地就確定了另一個變量的值”這一共性。
函數的概念
在上面各例中,都有兩個變量,給定其中某一各變量(自變量)的值,相應地就確定另一個變量(因變量)的值。
一般地,在某個變化過程中,有兩個變量x和y,如果給定一個x值,相應地就確定了一個y值,那么我們稱y是x的函數,其中x是自變量,y是因變量。
三、隨堂練習
書P152頁 隨堂練習1、2、3
四、本課小結
初步掌握函數的概念,能判斷兩個變量間的關系是否可看作函數。
在一個函數關系式中,能識別自變量與因變量,給定自變量的值,相應地會求出函數的值。
函數的三種表達式:
圖象;(2)表格;(3)關系式。
五、探究活動
為了加強公民的節(jié)水意識,某市制定了如下用水收費標準:每戶每月的用水不超過10噸時,水價為每噸1.2元;超過10噸時,超過的部分按每噸1.8元收費,該市某戶居民5月份用水x噸(x>10),應交水費y元,請用方程的知識來求有關x和y的關系式,并判斷其中一個變量是否為另一個變量的函數?
。ù鸢福篩=1.8x-6或)
六、課后作業(yè)
習題6.1
八年級數學教案9
教學內容和地位:
眾數、中位數是描述一組數據的集中趨勢的兩個統(tǒng)計特征量,是幫助學生學會用數據說話的基本概念。本節(jié)課的教學內容和現實生活密切相關,是培養(yǎng)學生應用數學意識和創(chuàng)新能力的最好素材。
教學重點和難點:
本節(jié)課的重點是眾數和中位數兩概念的形成過程及兩概念的運用。本節(jié)課的難點是對統(tǒng)計數據從多角度進行全面地分析。因為利用數據進行分析,對剛剛接觸統(tǒng)計的學生來說,他們原有的認知結構中缺乏這方面的知識經驗,所以,我們可以借助生活中的事例,利用豐富多彩的多媒體輔助,幫助學生突破這一知識難點。
教學目標分析:
認知目標:
(1)使學生認知眾數、中位數的`意義;
。2)會求一組數據的眾數、中位數。
能力目標:
。1)讓學生接觸并解決一些社會生活中的問題,為學生創(chuàng)新學數學、用數學的情境,培養(yǎng)學生的數學應用意識和創(chuàng)新意識。
。2)在問題解決的過程中,培養(yǎng)學生的自主學習能力;
。3)在問題分析的過程中,培養(yǎng)學生的團結協(xié)作精神。
情感目標:
(1)通過多媒體網絡課件,提供適當的問題情境,激發(fā)學生的學習熱情,培養(yǎng)學生學習數學的興趣;
。2)在合作學習中,學會交流,相互評價,提高學生的合作意識與能力。
教學輔助:
網絡教室、多媒體輔助網絡教學課件、BBS電子公告欄、學習資源庫
教法與學法:
根據本節(jié)課的教學內容,主要采用了討論發(fā)現法。即課堂上,教師(或學生)提出適當的問題,通過學生與學生(或教師)之間相互交流,相互學習,相互討論,在問題解決的過程中發(fā)現概念的產生過程,體現“數學教學是數學思維活動的過程的教學”。在教學活動中,通過學生的自主學習來體現他們的主體地位,而教師是通過對學生參與學習的啟發(fā)、調整、激勵來體現自己的主導作用。另外,在學生合作學習的同時,始終堅持對學生進行“學疑結合”、“學思結合”、“學用結合”的學法指導,這對學生的主體意識的培養(yǎng)和創(chuàng)新能力的培養(yǎng)都有積極的意義。
八年級數學教案10
一、教學目標
1、靈活應用勾股定理及逆定理解決實際問題
2、進一步加深性質定理與判定定理之間關系的認識
二、重點、難點
1、重點:靈活應用勾股定理及逆定理解決實際問題
2、難點:靈活應用勾股定理及逆定理解決實際問題
3、難點的突破方法:
三、課堂引入
創(chuàng)設情境:在軍事和航海上經常要確定方向和位置,從而使用一些數學知識和數學方法
四、例習題分析
例1(P83例2)
分析:⑴了解方位角,及方位名詞;
、埔李}意畫出圖形;
、且李}意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;
、纫驗242+182=302,PQ2+PR2=QR2,根據勾股定理的逆定理,知∠QPR=90°;
、伞螾RS=∠QPR—∠QPS=45°
小結:讓學生養(yǎng)成“已知三邊求角,利用勾股定理的逆定理”的意識、
例2(補充)一根30米長的細繩折成3段,圍成一個三角形,其中一條邊的長度比較短邊長7米,比較長邊短1米,請你試判斷這個三角形的形狀、
分析:⑴若判斷三角形的形狀,先求三角形的`三邊長;
、圃O未知數列方程,求出三角形的三邊長5、12、13;
⑶根據勾股定理的逆定理,由52+122=132,知三角形為直角三角形
解略、
本題幫助培養(yǎng)學生利用方程思想解決問題,進一步養(yǎng)成利用勾股定理的逆定理解決實際問題的意識
八年級數學教案11
分式方程
教學目標
1.經歷分式方程的概念,能將實際問題中的等量關系用分式方程 表示,體會分式方程的模型作用.
2.經歷實際問題-分式方程方程模型的過程,發(fā)展學生分析問題、解決問題的能力,滲透數學的轉化思想人體,培養(yǎng)學生的應用意識。
3.在活動中培養(yǎng)學生樂于探究、合作學習的習慣,培養(yǎng)學 生努力尋找 解決問題的進取心,體會數學的應用價值.
教學重點:
將實際問題中的等量 關系用分式方程表示
教學難點:
找實際問題中的等量關系
教學過程:
情境導入:
有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗田每公頃的產量比第二塊少3000 kg,分別求這兩塊試驗田每 公頃 的產量。你能找出這一問題中的所有等量關系嗎?(分組交流)
如果設第一塊試驗田 每公頃的產量為 kg,那么第二塊試驗田每公頃的產量是________kg。
根據題意,可得方程___________________
二、講授新課
從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的.高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時間 是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從 甲地到乙地所需的時間。
這 一問題中有哪些等量關系?
如果設客車由高速公路從甲地到乙地 所需的時間為 h,那么它由普通公路從甲地到乙地所需的時間為_________h。
根據題意,可得方程_ _____________________。
學生分組探討、交流,列出方程.
三.做一做:
為了幫助遭受自然災害的地區(qū)重建家園,某學校號召同學們自愿捐款。已知第一次捐款總額為4800元,第二次捐款總額為5000元,第二次捐款人數比第一次多20人,而且兩次人均捐款額恰好相等。如果設第一次捐款人數為 人,那么 滿足怎樣的方程?
四.議一議:
上面所得到的方程有什么共同特點?
分母中含有未知數的方程叫做分式方程
分式方程與整式方程有什么區(qū)別?
五、 隨堂練習
(1)據聯(lián)合國《20xx年全球投資 報告》指出,中國20xx年吸收外國投資額 達530億美元,比上一年增加了13%。設20xx年我國吸收外國投資額為 億美元,請你寫出 滿足的方程。你能寫出幾個方程?其中哪一個是分式方程?
(2)輪船在順水中航行20千米與逆水航行10千米所用時間相同,水流速度為2. 5千米/小時,求輪船的靜水速度
(3)根據分式方程 編一道應用題,然后同組交流,看誰編得好
六、學 習小結
本節(jié)課你學到了哪些知識?有什么感想?
七.作業(yè)布置
八年級數學教案12
【教學目標】
1、了解三角形的中位線的概念
2、了解三角形的中位線的性質
3、探索三角形的中位線的性質的一些簡單的應用
【教學重點、難點】
重點:三角形的中位線定理。
難點:三角形的中位線定理的證明中添加輔助線的思想方法。
【教學過程】
。ㄒ唬﹦(chuàng)設情景,引入新課
1、如圖,為了測量一個池塘的寬BC,在池塘一側的平地上選一點A,再分別找出線段AB、AC的中點D、E,若測出DE的長,就可以求出池塘的寬BC,你知道這是為什么嗎?
2、動手操作:剪一刀,將一張三角形紙片剪成一張三角形紙片和一張?zhí)菪渭埰?/p>
。1)如果要求剪得的兩張紙片能拼成平行的四邊形,剪痕的位置有什么要求?
。2)要把所剪得的'兩個圖形拼成一個平行四邊形,可將其中的三角形做怎樣的圖形變換?
3、引導學生概括出中位線的概念。
問題:(1)三角形有幾條中位線?(2)三角形的中位線與中線有什么區(qū)別?
啟發(fā)學生得出:三角形的中位線的兩端點都是三角形邊的中點,而三角形中線只有一個端點是邊中點,另一端點上三角形的一個頂點。
4、猜想:DE與BC的關系?(位置關系與數量關系)
。ǘ、師生互動,探究新知
1、證明你的猜想
引導學生寫出已知,求證,并啟發(fā)分析。
。ㄒ阎酣SABC中,D、E分別是AB、AC的中點,求證:DE∥BC,DE=1/2BC)
啟發(fā)1:證明直線平行的方法有哪些?(由角的相等或互補得出平行,由平行四邊形得出平行等)
啟發(fā)2:證明線段的倍分的方法有哪些?(截長或補短)
學生分小組討論,教師巡回指導,經過分析后,師生共同完成推理過程,板書證明過程,強調有其他證法。
證明:如圖,以點E為旋轉中心,把⊿ADE繞點E,按順時針方向旋轉180゜,得到⊿CFE,則D,E,F同在一直線上,DE=EF,且⊿ADE≌⊿CFE。
∴∠ADE=∠F,AD=CF,
∴AB∥CF。
又∵BD=AD=CF,
∴四邊形BCFD是平行四邊形(一組對邊平行且相等的四邊形是平行四邊形),
∴DF∥BC(根據什么?),
∴DE 1/2BC
2、啟發(fā)學生歸納定理,并用文字語言表達:三角形中位線平行于第三邊且等于第三邊的一半。
。ㄈ⿲W以致用、落實新知
1、練一練:已知三角形邊長分別為6、8、10,順次連結各邊中點所得的三角形周長是多少?
2、想一想:如果⊿ABC的三邊長分別為a、b、c,AB、BC、AC各邊中點分別為D、E、F,則⊿DEF的周長是多少?
3、例題:已知:如圖,在四邊形ABCD中,E,F,G,H分別是AB,BC,CD,DA的中點。
求證:四邊形EFGH是平行四邊形。
啟發(fā)1:由E,F分別是AB,BC的中點,你會聯(lián)想到什么圖形?
啟發(fā)2:要使EF成為三角的中位線,應如何添加輔助線?應用三角形的中位線定理,能得到什么?你能得出EF∥GH嗎?為什么?
證明:如圖,連接AC。
∵EF是⊿ABC的中位線,
∴EF 1/2AC(三角形的中位線平行于第三邊,并且等于第三邊的一半)。
同理,HG 1/2AC。
∴EF HG。
∴四邊形EFGH是平行四邊形(一組對邊平行并且相等的四邊形是平行四邊形)
挑戰(zhàn):順次連結上題中,所得到的四邊形EFGH四邊中點得到一個四邊形,繼續(xù)作下去。。。你能得出什么結論?
。ㄋ模⿲W生練習,鞏固新知
1、請回答引例中的問題(1)
2、如圖,在四邊形ABCD中,AB=CD,M,N,P分別是AD,BC, BD的中點。求證:∠PNM=∠PMN
(五)小結回顧,反思提高
今天你學到了什么?還有什么困惑?
八年級數學教案13
總課時:7課時 使用人:
備課時間:第八周 上課時間:第十周
第4課時:5、2平面直角坐標系(2)
教學目標
知識與技能
1.在給定的直角坐標系下,會根據坐標描出點的位置;
2.通過找點、連線、觀察,確定圖形的大致形狀的問題,能進一步掌握平面直角坐標系的基本內容。
過程與方法
1.經歷畫坐標 系、描點、連線、看圖以及由點找坐標等過程,發(fā)展學生的數形結合思想,培養(yǎng)學生的合作 交流能力;
2.通過由點確定坐標到根據坐標描點的轉化過程,進一步培養(yǎng)學生的轉化意識。
情感態(tài)度與價值觀
通過生動有趣的教學活動,發(fā)展學生的'合情推理能力和豐富的情感、態(tài)度,提高學生學習數學的興趣。
教學重點:在已知的直角坐標系下找點、連線、觀察,確定圖形的大致形狀。
教學難點:在已知的直角坐標系下找點、連線、觀察,確定圖形的大致形狀。
教學過程
第一環(huán)節(jié) 感 受生活中的情境,導入新課(10分鐘,學生自己繪圖找點)
在上節(jié)課中我們學習了平面直角坐標系的定義,以及橫軸、縱軸、點 的坐標的定義,練習了在平面直角坐標系中由點找坐標,還探討了橫坐標或縱坐標相同的點的連線與坐標軸的關系,坐標軸上點的坐標有什么特點。
練習:指出下列 各點以及所在象限或坐標軸:
A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(0, ), G(0,0) (抽取學生作答)
由點找坐標是已知點在直角坐標 系中的位置,根據這點在方格紙上對應的x軸、y軸上的數字寫出它的坐標,反過來,已知坐標,讓 你在直角坐標系中找點,你能找到嗎?這就是本節(jié)課的內容。
第二環(huán)節(jié) 分類討論,探索新知.(15分鐘,小組討論,全班交流)
1.請同學們拿出準備好的方格紙,自己建立平面直角坐標系,然后按照我給出的坐標,在直角坐標系中描點,并依次用線段連接起來。
(-9,3),(-9,0),(-3,0),( -3,3)
( 學生操作完畢后)
2.(出示投影)還是在這個平面直角坐標系中,描出下列各組內的點用線段依次連接起來。
(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);
(2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9);
(3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);
(4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。
觀察所得的圖形,你覺得它像什么?
分成4人小組,大家合作在剛才建立的平面直角坐標系中(選出小組中最好的)添畫。各人分工,每人畫一小題?茨膫小組做得最快?
(出示學生的作品)畫出是 這樣的嗎?這幅圖畫很美,你們覺得它像什么?
這個圖形像一棟房子旁邊還有一棵大樹。
3.做一做
(出示投影)
在書上已建立的直角坐標系畫,要求每位同學獨立完成。
(學生描點、畫圖)
(拿出一位做對的學生的作品投影)
你們觀察所得的圖形和它是否一樣?若一樣,你能判斷出它像什么呢?
(像貓臉)
第三環(huán)節(jié) 學有所用.(10分鐘,先獨立完成,后小組討論)
(補充)1.在直角坐標系中描出下列各點,并將各組內的點用線段順次連接起來。
(1)(0,3),(-4,0),(0,-3),(4,0),(0,3);
(2)(0,0),(4,-3),(8,0),(4,3),(0,0);
(3)(2,0)
觀察所得的圖形,你覺得它像什么?(像移動的菱形)
2.在直角坐標系中,設法找到若干個點使得連接各點所得的封閉圖形是如下圖所示的十字。
先獨立完成,然后小組討論是否正確。
第四環(huán)節(jié) 感悟與收獲(5分鐘,學生總結,全班交流)
本節(jié)課在復習上節(jié)課的基礎上,通過找點、連 線、觀察,確定圖形的大致形狀,進一步掌握平面直角坐標系的基本內容。
在例題和練習中,我們畫出了不少美麗的圖形,自己設計一些圖形,并把圖形放在直角坐標系下,寫出點的坐標。
第五環(huán)節(jié) 布置作業(yè)
習題5、4
A組(優(yōu)等生)1、2、3
B組(中等生)1、2
C組(后三分之一生)1、2
八年級數學教案14
一.教學目標:
1.了解方差的定義和計算公式。
2.理解方差概念的產生和形成的過程。
3.會用方差計算公式來比較兩組數據的波動大小。
二.重點、難點和難點的突破方法:
1.重點:方差產生的必要性和應用方差公式解決實際問題。
2.難點:理解方差公式
3.難點的突破方法:
方差公式:S = [( - ) +( - ) +…+( - )]比較復雜,學生理解和記憶這個公式都會有一定困難,以致應用時常常出現計算的錯誤,為突破這一難點,我安排了幾個環(huán)節(jié),將難點化解。
(1)首先應使學生知道為什么要學習方差和方差公式,目的不明確學生很難對本節(jié)課內容產生興趣和求知欲望。教師在授課過程中可以多舉幾個生活中的小例子,不如選擇儀仗隊隊員、選擇運動員、選擇質量穩(wěn)定的電器等。學生從中可以體會到生活中為了更好的做出選擇判斷經常要去了解一組數據的波動程度,僅僅知道平均數是不夠的。
(2)波動性可以通過什么方式表現出來?第一環(huán)節(jié)中點明了為什么去了解數據的波動性,第二環(huán)節(jié)則主要使學生知道描述數據,波動性的方法。可以畫折線圖方法來反映這種波動大小,可是當波動大小區(qū)別不大時,僅用畫折線圖方法去描述恐怕不會準確,這自然希望可以出現一種數量來描述數據波動大小,這就引出方差產生的必要性。
(3)第三環(huán)節(jié)教師可以直接對方差公式作分析和解釋,波動大小指的是與平均數之間差異,那么用每個數據與平均值的差完全平方后便可以反映出每個數據的波動大小,整體的波動大小可以通過對每個數據的波動大小求平均值得到。所以方差公式是能夠反映一組數據的波動大小的一個統(tǒng)計量,教師也可以根據學生程度和課堂時間決定是否介紹平均差等可以反映數據波動大小的其他統(tǒng)計量。
三.例習題的意圖分析:
1.教材P125的討論問題的意圖:
(1).創(chuàng)設問題情境,引起學生的學習興趣和好奇心。
(2).為引入方差概念和方差計算公式作鋪墊。
(3).介紹了一種比較直觀的衡量數據波動大小的方法——畫折線法。
(4).客觀上反映了在解決某些實際問題時,求平均數或求極差等方法的局限性,使學生體會到學習方差的意義和目的。
2.教材P154例1的設計意圖:
(1).例1放在方差計算公式和利用方差衡量數據波動大小的規(guī)律之后,不言而喻其主要目的是及時復習,鞏固對方差公式的掌握。
(2).例1的解題步驟也為學生做了一個示范,學生以后可以模仿例1的格式解決其他類似的實際問題。
四.課堂引入:
除采用教材中的引例外,可以選擇一些更時代氣息、更有現實意義的引例。例如,通過學生觀看2004年奧運會劉翔勇奪110米欄冠軍的錄像,進而引導教練員根據平時比賽成績選擇參賽隊員這樣的`實際問題上,這樣引入自然而又真實,學生也更感興趣一些。
五.例題的分析:
教材P154例1在分析過程中應抓住以下幾點:
1.題目中“整齊”的含義是什么?說明在這個問題中要研究一組數據的什么?學生通過思考可以回答出整齊即波動小,所以要研究兩組數據波動大小,這一環(huán)節(jié)是明確題意。
2.在求方差之前先要求哪個統(tǒng)計量,為什么?學生也可以得出先求平均數,因為公式中需要平均值,這個問題可以使學生明確利用方差計算步驟。
3.方差怎樣去體現波動大小?
這一問題的提出主要復習鞏固方差,反映數據波動大小的規(guī)律。
六.隨堂練習:
1.從甲、乙兩種農作物中各抽取1株苗,分別測得它的苗高如下:(單位:cm)
甲:9、10、11、12、7、13、10、8、12、8;
乙:8、13、12、11、10、12、7、7、9、11;
問:(1)哪種農作物的苗長的比較高?
(2)哪種農作物的苗長得比較整齊?
2.段巍和金志強兩人參加體育項目訓練,近期的5次測試成績如下表所示,誰的成績比較穩(wěn)定?為什么?
測試次數1 2 3 4 5
段巍13 14 13 12 13
金志強10 13 16 14 12
參考答案:1.(1)甲、乙兩種農作物的苗平均高度相同;(2)甲整齊
2.段巍的成績比金志強的成績要穩(wěn)定。
七.課后練習:
1.已知一組數據為2、0、-1、3、-4,則這組數據的方差為。
2.甲、乙兩名學生在相同的條件下各射靶10次,命中的環(huán)數如下:
甲:7、8、6、8、6、5、9、10、7、4
乙:9、5、7、8、7、6、8、6、7、7
經過計算,兩人射擊環(huán)數的平均數相同,但S S,所以確定去參加比賽。
3.甲、乙兩臺機床生產同種零件,10天出的次品分別是( )
甲:0、1、0、2、2、0、3、1、2、4
乙:2、3、1、2、0、2、1、1、2、1
分別計算出兩個樣本的平均數和方差,根據你的計算判斷哪臺機床的性能較好?
4.小爽和小兵在10次百米跑步練習中成績如表所示:(單位:秒)
小爽10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9
小兵10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8
如果根據這幾次成績選拔一人參加比賽,你會選誰呢?
答案:1. 6 2. >、乙;3. =1.5、S =0.975、 =1. 5、S =0.425,乙機床性能好
4. =10.9、S =0.02;
=10.9、S =0.008
選擇小兵參加比賽。
八年級數學教案15
八年級下數學教案-變量與函數(2)
一、教學目的
1.使學生理解自變量的取值范圍和函數值的意義。
2.使學生理解求自變量的取值范圍的兩個依據。
3.使學生掌握關于解析式為只含有一個自變量的簡單的整式、分式、二次根式的函數的自變量取值范圍的求法,并會求其函數值。
4.通過求函數中自變量的取值范圍使學生進一步理解函數概念。
二、教學重點、難點
重點:函數自變量取值的求法。
難點:函靈敏處變量取值的確定。
三、教學過程
復習提問
1.函數的定義是什么?函數概念包含哪三個方面的內容?
2.什么叫分式?當x取什么數時,分式x+2/2x+3有意義?
。ù穑悍帜咐锖凶帜傅挠欣硎浇蟹质剑帜浮0,即x≠3/2。)
3.什么叫二次根式?使二次根式成立的條件是什么?
(答:根指數是2的根式叫二次根式,使二次根式成立的條件是被開方數≥0。)
4.舉出一個函數的實例,并指出式中的變量與常量、自變量與函數。
新課
1.結合同學舉出的實例說明解析法的意義:用教學式子表示函數方法叫解析法。并指出,函數表示法除了解析法外,還有圖象法和列表法。
2.結合同學舉出的實例,說明函數的自變量取值范圍有時要受到限制這就可以引出自變量取值范圍的意義,并說明求自變量的取值范圍的兩個依據是:
。1)自變量取值范圍是使函數解析式(即是函數表達式)有意義。
。2)自變量取值范圍要使實際問題有意義。
3.講解P93中例2。并指出例2四個小題代表三類題型:(1),(2)題給出的是只含有一個自變量的整式;(3)題給出的是只含有一個自變量的分式;(4)題給出的是只含有一個自變量的二次根式。
推廣與聯(lián)想:請同學按上述三類題型自編3個題,并寫出解答,同桌互對答案,老師評講。
4.講解P93中例3。結合例3引出函數值的意義。并指出兩點:
。1)例3中的4個小題歸納起來仍是三類題型。
。2)求函數值的問題實際是求代數式值的.問題。
補充例題
求下列函數當x=3時的函數值:
。1)y=6x-4; (2)y=--5x2; (3)y=3/7x-1; (4)。
。ù穑海1)y=14;(2)y=-45;(3)y=3/20;(4)y=0。)
小結
1.解析法的意義:用數學式子表示函數的方法叫解析法。
2.求函數自變量取值范圍的兩個方法(依據):
。1)要使函數的解析式有意義。
、俸瘮档慕馕鍪绞钦綍r,自變量可取全體實數;
、诤瘮档慕馕鍪绞欠质綍r,自變量的取值應使分母≠0;
、酆瘮档慕馕鍪绞嵌胃綍r,自變量的取值應使被開方數≥0。
(2)對于反映實際問題的函數關系,應使實際問題有意義。
3.求函數值的方法:把所給出的自變量的值代入函數解析式中,即可求出相慶原函數值。
練習:P94中1,2,3。
作業(yè):P95~P96中A組3,4,5,6,7。B組1,2。
四、教學注意問題
1.注意滲透與訓練學生的歸納思維。比如例2、例3中各是4個小題,對每一個例題均可歸納為三類題型。而對于例2、例3這兩道例題,雖然要求各異,但題目結構仍是三類題型:整式、分式、二次根式。
2.注意訓練與培養(yǎng)學生的優(yōu)質聯(lián)想能力。要求學生仿照例題自編題目是有效手段。
3.注意培養(yǎng)學生對于“具體問題要具體分析”的良好學習方法。比如對于有實際意義來確定,由于實際問題千差萬別,所以我們就要具體分析,靈活處置。
【八年級數學教案】相關文章:
八年級數學教案03-29
八年級上冊數學教案08-29
八年級數學教案模板11-18
八年級數學教案[推薦]11-08
八年級數學教案全集02-24
八年級下冊數學教案10-22
八年級數學教案15篇09-28
八年級數學教案【常用15篇】12-30
小學數學教案06-14